Open
Description
When a graph learner is deep cloned, the dependencies in the parameter set disappear in the original and cloned learner.
library("mlr3")
library("mlr3pipelines")
library("paradox")
graph_learner = GraphLearner$new( lrn("classif.rpart"))
graph_learner$param_set$add_dep("classif.rpart.cp", "classif.rpart.keep_model", CondEqual$new(TRUE))
graph_learner$param_set$deps
# > id on cond
# > 1: classif.rpart.cp classif.rpart.keep_model <CondEqual[9]>
graph_learner_2 = graph_learner$clone(deep = TRUE)
graph_learner_2$param_set$deps
# > Empty data.table (0 rows and 3 cols): id,on,cond
graph_learner$param_set$deps
# > Empty data.table (0 rows and 3 cols): id,on,cond
Normal learners are not affected.
library("mlr3")
library("mlr3pipelines")
library("paradox")
learner = lrn("classif.rpart")
learner$param_set$add_dep("cp", "keep_model", CondEqual$new(TRUE))
learner$param_set$deps
# > id on cond
#> 1: cp keep_model <CondEqual[9]>
learner_2 = learner$clone(deep = TRUE)
learner_2$param_set$deps
# > id on cond
#> 1: cp keep_model <CondEqual[9]>
Metadata
Assignees
Labels
No labels