|
48 | 48 | "After creating the project, you enable model monitoring." |
49 | 49 | ] |
50 | 50 | }, |
| 51 | + { |
| 52 | + "metadata": {}, |
| 53 | + "cell_type": "code", |
| 54 | + "outputs": [], |
| 55 | + "execution_count": null, |
| 56 | + "source": [ |
| 57 | + "import mlrun\n", |
| 58 | + "from datasets import Dataset, load_dataset\n", |
| 59 | + "import pandas as pd\n", |
| 60 | + "from src.llm_as_a_judge import OpenAIJudge" |
| 61 | + ], |
| 62 | + "id": "2186eac3109c41eb" |
| 63 | + }, |
51 | 64 | { |
52 | 65 | "cell_type": "code", |
53 | 66 | "execution_count": null, |
54 | 67 | "id": "6e99f06d", |
55 | 68 | "metadata": {}, |
56 | | - "outputs": [], |
57 | 69 | "source": [ |
58 | 70 | "# Create the project:\n", |
59 | 71 | "project = mlrun.get_or_create_project(\n", |
|
65 | 77 | " context=\"./src\",\n", |
66 | 78 | ")\n", |
67 | 79 | "\n", |
| 80 | + "secrets = mlrun.set_env_from_file('env.env', return_dict=True)\n", |
| 81 | + "project.set_secrets(secrets)" |
| 82 | + ], |
| 83 | + "outputs": [] |
| 84 | + }, |
| 85 | + { |
| 86 | + "metadata": {}, |
| 87 | + "cell_type": "code", |
| 88 | + "outputs": [], |
| 89 | + "execution_count": null, |
| 90 | + "source": [ |
68 | 91 | "# Enable model monitoring\n", |
69 | 92 | "from src.model_monitoring_utils import enable_model_monitoring\n", |
70 | 93 | "\n", |
71 | 94 | "# If this project was running with MM enabled pre-1.8.0, disable the old model monitoring to update configurations\n", |
72 | 95 | "project.disable_model_monitoring(delete_stream_function=True)\n", |
73 | 96 | "\n", |
74 | | - "enable_model_monitoring(project=project, base_period=2)\n" |
75 | | - ] |
| 97 | + "enable_model_monitoring(project=project, base_period=2)" |
| 98 | + ], |
| 99 | + "id": "78a9e4fe68462400" |
76 | 100 | }, |
77 | 101 | { |
78 | 102 | "cell_type": "markdown", |
|
277 | 301 | "metadata": {}, |
278 | 302 | "outputs": [], |
279 | 303 | "source": [ |
| 304 | + "OPENAI_MODEL = mlrun.get_secret_or_env(\"OPENAI_MODEL\")\n", |
280 | 305 | "# Creating the OpenAI Judge\n", |
281 | 306 | "judge = OpenAIJudge(\n", |
282 | 307 | " judge_type=\"custom-grading\",\n", |
|
437 | 462 | "source": [ |
438 | 463 | "# Define application requirements\n", |
439 | 464 | "requirements = ['openai==1.108.0',\n", |
440 | | - "'transformers==4.56.1',\n", |
441 | | - "'optimum==1.27.0',\n", |
442 | 465 | "'deepeval==2.5.5',\n", |
443 | 466 | "'llama-index==0.14.2',\n", |
444 | 467 | "'llama-index-core==0.14.2',\n", |
445 | | - "]\n", |
446 | | - "if sys.version_info.major == 3 and sys.version_info.minor == 9:\n", |
447 | | - " requirements += ['protobuf==3.20.3']" |
| 468 | + "'langchain==0.2.17',\n", |
| 469 | + "]" |
448 | 470 | ] |
449 | 471 | }, |
450 | 472 | { |
|
456 | 478 | "\n" |
457 | 479 | ] |
458 | 480 | }, |
| 481 | + { |
| 482 | + "metadata": {}, |
| 483 | + "cell_type": "markdown", |
| 484 | + "source": "", |
| 485 | + "id": "e31576a009f2ff93" |
| 486 | + }, |
459 | 487 | { |
460 | 488 | "cell_type": "code", |
461 | 489 | "execution_count": null, |
|
560 | 588 | }, |
561 | 589 | "outputs": [], |
562 | 590 | "source": [ |
| 591 | + "from mlrun.features import Feature\n", |
| 592 | + "\n", |
563 | 593 | "# Log the model to the project:\n", |
564 | 594 | "base_model = \"google-gemma-2b\"\n", |
565 | 595 | "project.log_model(\n", |
|
696 | 726 | }, |
697 | 727 | "outputs": [], |
698 | 728 | "source": [ |
| 729 | + "from mlrun.model_monitoring.helpers import get_result_instance_fqn\n", |
699 | 730 | "prj_alert_obj = get_result_instance_fqn(\n", |
700 | 731 | " ep_id, app_name=app_name, result_name=result_name\n", |
701 | 732 | ")\n", |
|
718 | 749 | "metadata": {}, |
719 | 750 | "outputs": [], |
720 | 751 | "source": [ |
| 752 | + "import mlrun.common.schemas.alert as alert_constants\n", |
721 | 753 | "import mlrun.common.schemas.alert as alert_objects" |
722 | 754 | ] |
723 | 755 | }, |
|
904 | 936 | "from deepeval.metrics import (\n", |
905 | 937 | " AnswerRelevancyMetric,\n", |
906 | 938 | " HallucinationMetric,\n", |
907 | | - ")" |
| 939 | + ")\n", |
| 940 | + "import os\n", |
| 941 | + "os.environ[\"OPENAI_API_KEY\"] = mlrun.get_secret_or_env(\"OPENAI_API_KEY\")\n", |
| 942 | + "os.environ[\"OPENAI_BASE_URL\"]= mlrun.get_secret_or_env(\"OPENAI_API_BASE\")" |
908 | 943 | ] |
909 | 944 | }, |
910 | 945 | { |
|
1072 | 1107 | "ret = project.run_function(\n", |
1073 | 1108 | " function=\"generate-ds\",\n", |
1074 | 1109 | " handler=\"generate_ds\",\n", |
1075 | | - " params={\"input_ds\": input_ds,\"hf_repo_id\":None},\n", |
| 1110 | + " params={\"input_ds\": input_ds},\n", |
1076 | 1111 | " outputs=[\"new-train-ds\", \"dataset\"],\n", |
1077 | 1112 | ")" |
1078 | 1113 | ] |
|
0 commit comments