|
6 | 6 | <!-- AUTOGEN:START (do not edit below) --> |
7 | 7 | | Name | Description | Kind | Categories | |
8 | 8 | | --- | --- | --- | --- | |
9 | | -| [agent_deployer](https://github.com/mlrun/functions/tree/master/modules/src/agent_deployer) | Helper for serving function deploy of an AI agents using MLRun | monitoring_application | model-serving | |
10 | | -| [count_events](https://github.com/mlrun/functions/tree/master/modules/src/count_events) | Count events in each time window | monitoring_application | model-serving | |
11 | | -| [evidently_iris](https://github.com/mlrun/functions/tree/master/modules/src/evidently_iris) | Demonstrates Evidently integration in MLRun for data quality and drift monitoring using the Iris dataset | monitoring_application | model-serving, structured-ML | |
12 | | -| [histogram_data_drift](https://github.com/mlrun/functions/tree/master/modules/src/histogram_data_drift) | Model-monitoring application for detecting and visualizing data drift | monitoring_application | model-serving, structured-ML | |
13 | | -| [openai_proxy_app](https://github.com/mlrun/functions/tree/master/modules/src/openai_proxy_app) | OpenAI application runtime based on fastapi | generic | genai | |
14 | | -| [vllm_module](https://github.com/mlrun/functions/tree/master/modules/src/vllm_module) | Deploys a vLLM OpenAI-compatible LLM server as an MLRun application runtime, with configurable GPU usage, node selection, tensor parallelism, and runtime flags. | generic | genai | |
| 9 | +| [agent_deployer](https://github.com/mlrun/functions/tree/development/modules/src/agent_deployer) | Helper for serving function deploy of an AI agents using MLRun | monitoring_application | model-serving | |
| 10 | +| [count_events](https://github.com/mlrun/functions/tree/development/modules/src/count_events) | Count events in each time window | monitoring_application | model-serving | |
| 11 | +| [evidently_iris](https://github.com/mlrun/functions/tree/development/modules/src/evidently_iris) | Demonstrates Evidently integration in MLRun for data quality and drift monitoring using the Iris dataset | monitoring_application | model-serving, structured-ML | |
| 12 | +| [histogram_data_drift](https://github.com/mlrun/functions/tree/development/modules/src/histogram_data_drift) | Model-monitoring application for detecting and visualizing data drift | monitoring_application | model-serving, structured-ML | |
| 13 | +| [openai_proxy_app](https://github.com/mlrun/functions/tree/development/modules/src/openai_proxy_app) | OpenAI application runtime based on fastapi | generic | genai | |
| 14 | +| [vllm_module](https://github.com/mlrun/functions/tree/development/modules/src/vllm_module) | Deploys a vLLM OpenAI-compatible LLM server as an MLRun application runtime, with configurable GPU usage, node selection, tensor parallelism, and runtime flags. | generic | genai | |
15 | 15 | <!-- AUTOGEN:END --> |
0 commit comments