Skip to content

Commit 151f37f

Browse files
committed
Update readme
1 parent d0bd9ec commit 151f37f

File tree

1 file changed

+35
-9
lines changed

1 file changed

+35
-9
lines changed

README.md

Lines changed: 35 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,9 @@
22
<img src="assets/duello-logo.png" alt="crates.io", height="300">
33
</p>
44
<p align="center">
5+
<a href="https://colab.research.google.com/github/mlund/duello/blob/master/scripts/colab.ipynb">
6+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
7+
</a>
58
<a href="https://opensource.org/licenses/Apache-2.0">
69
<img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg">
710
</a>
@@ -21,17 +24,40 @@
2124

2225
# Introduction
2326

24-
This iterates over all intermolecular poses between two rigid molecules using a regular grid in angular space using subdivided icosahedrons.
25-
For each mass center separation, _R_, the partition function,
26-
$Q(R) = \sum e^{-V(R)/k_BT}$, is explicitly
27-
evaluated to obtain the free energy, $A(R) = -k_BT \ln \langle e^{-V(R)/k_BT} \rangle_{\Omega}$ and
28-
the thermally averaged energy,
27+
Duello is a tool to calculate the potential of mean force (PMF) between two ridig bodies, performing a
28+
statistical mechanical average over inter-molecular orientations using subdivided icosahedrons.
29+
For each mass center separation, _R_, the static contribution to the partition function,
30+
$\mathcal{Z}(R) = \sum_{\mathbf{\Omega}} e^{-V(R,\mathbf{\Omega})/k_BT}$, is explicitly
31+
evaluated to obtain the potential of mean force,
32+
$w(R) = -k_BT \ln \mathcal{Z}(R)$
33+
and the thermally averaged energy,
34+
35+
$$
36+
U(R) = \frac{\sum V(R,\mathbf{\Omega}) e^{-V(R,\mathbf{\Omega})/k_BT}} {\mathcal{Z}(R)}
37+
$$
38+
39+
where $V(R,\mathbf{\Omega})$ is the total inter-body interaction energy and $\mathbf{\Omega}$ represents a 5D angular space (_e.g._ two spherical coordinates for each body plus a dihedral angle around the connection line).
40+
41+
The osmotic second virial coefficient, which has dimensions of _volume_, reports on exactly two-body interactions:
2942

3043
$$
31-
U(R) = \frac{\sum V(R) e^{-V(R)/k_BT}} {Q}
44+
\begin{align}
45+
B_2 & = -\frac{1}{16\pi^2} \int_{\mathbf{\Omega}} \int_0^{\infty}
46+
\left (
47+
e^{-V(R,\mathbf{\Omega})/k_BT} - 1
48+
\right )
49+
R^2 dR d\mathbf{\Omega}\\
50+
& = -2\pi \int_0^{\infty} \left ( e^{-w(R)/k_BT} -1 \right )R^2 dR \\
51+
& = B_2^{hs} -2\pi \int_{\sigma}^{\infty} \left ( e^{-w(R)/k_BT} -1 \right )R^2 dR\\
52+
\end{align}
3253
$$
54+
where $B_2^{hs} = 2\pi\sigma^3/3$ is the hard-sphere contribution and $\sigma$ is a distance
55+
of closest approach where $w(R\lt \sigma)=\infty$ is assumed.
56+
For systems with net attractive interactions, the dissociation constant, $K_d$, can be estimated by,
3357

34-
where $V(R)$ is the inter-body interaction energy averaged over angular space $\Omega$.
58+
$$
59+
K_d^{-1} = 2 N_A\left (B_2^{hs} - B_2\right )
60+
$$
3561

3662
<p align="center">
3763
<img src="assets/illustration.png" alt="crates.io", height="200">
@@ -99,8 +125,8 @@ Command | Description
99125

100126
Each macromolecule is represented by a rigid constellation of beads with
101127
properties defined under `atoms` in the topology file.
102-
The inter-molecular energy is calculated by summing all pairwise interactions
103-
between beads using a customizable pair potential.
128+
The inter-molecular energy, $V(R,\Omega)$ is calculated by summing all pairwise interactions
129+
between beads using a customizable pair potential, $u_{ij}$.
104130
If needed, different pair-potentials can be explicitly defined for
105131
specific atom pairs.
106132

0 commit comments

Comments
 (0)