|
2 | 2 | <img src="assets/duello-logo.png" alt="crates.io", height="300"> |
3 | 3 | </p> |
4 | 4 | <p align="center"> |
| 5 | + <a href="https://colab.research.google.com/github/mlund/duello/blob/master/scripts/colab.ipynb"> |
| 6 | + <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"> |
| 7 | + </a> |
5 | 8 | <a href="https://opensource.org/licenses/Apache-2.0"> |
6 | 9 | <img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg"> |
7 | 10 | </a> |
|
21 | 24 |
|
22 | 25 | # Introduction |
23 | 26 |
|
24 | | -This iterates over all intermolecular poses between two rigid molecules using a regular grid in angular space using subdivided icosahedrons. |
25 | | -For each mass center separation, _R_, the partition function, |
26 | | -$Q(R) = \sum e^{-V(R)/k_BT}$, is explicitly |
27 | | -evaluated to obtain the free energy, $A(R) = -k_BT \ln \langle e^{-V(R)/k_BT} \rangle_{\Omega}$ and |
28 | | -the thermally averaged energy, |
| 27 | +Duello is a tool to calculate the potential of mean force (PMF) between two ridig bodies, performing a |
| 28 | +statistical mechanical average over inter-molecular orientations using subdivided icosahedrons. |
| 29 | +For each mass center separation, _R_, the static contribution to the partition function, |
| 30 | +$\mathcal{Z}(R) = \sum_{\mathbf{\Omega}} e^{-V(R,\mathbf{\Omega})/k_BT}$, is explicitly |
| 31 | +evaluated to obtain the potential of mean force, |
| 32 | +$w(R) = -k_BT \ln \mathcal{Z}(R)$ |
| 33 | +and the thermally averaged energy, |
| 34 | + |
| 35 | +$$ |
| 36 | +U(R) = \frac{\sum V(R,\mathbf{\Omega}) e^{-V(R,\mathbf{\Omega})/k_BT}} {\mathcal{Z}(R)} |
| 37 | +$$ |
| 38 | + |
| 39 | +where $V(R,\mathbf{\Omega})$ is the total inter-body interaction energy and $\mathbf{\Omega}$ represents a 5D angular space (_e.g._ two spherical coordinates for each body plus a dihedral angle around the connection line). |
| 40 | + |
| 41 | +The osmotic second virial coefficient, which has dimensions of _volume_, reports on exactly two-body interactions: |
29 | 42 |
|
30 | 43 | $$ |
31 | | -U(R) = \frac{\sum V(R) e^{-V(R)/k_BT}} {Q} |
| 44 | +\begin{align} |
| 45 | +B_2 & = -\frac{1}{16\pi^2} \int_{\mathbf{\Omega}} \int_0^{\infty} |
| 46 | +\left ( |
| 47 | + e^{-V(R,\mathbf{\Omega})/k_BT} - 1 |
| 48 | +\right ) |
| 49 | +R^2 dR d\mathbf{\Omega}\\ |
| 50 | +& = -2\pi \int_0^{\infty} \left ( e^{-w(R)/k_BT} -1 \right )R^2 dR \\ |
| 51 | +& = B_2^{hs} -2\pi \int_{\sigma}^{\infty} \left ( e^{-w(R)/k_BT} -1 \right )R^2 dR\\ |
| 52 | +\end{align} |
32 | 53 | $$ |
| 54 | +where $B_2^{hs} = 2\pi\sigma^3/3$ is the hard-sphere contribution and $\sigma$ is a distance |
| 55 | +of closest approach where $w(R\lt \sigma)=\infty$ is assumed. |
| 56 | +For systems with net attractive interactions, the dissociation constant, $K_d$, can be estimated by, |
33 | 57 |
|
34 | | -where $V(R)$ is the inter-body interaction energy averaged over angular space $\Omega$. |
| 58 | +$$ |
| 59 | +K_d^{-1} = 2 N_A\left (B_2^{hs} - B_2\right ) |
| 60 | +$$ |
35 | 61 |
|
36 | 62 | <p align="center"> |
37 | 63 | <img src="assets/illustration.png" alt="crates.io", height="200"> |
@@ -99,8 +125,8 @@ Command | Description |
99 | 125 |
|
100 | 126 | Each macromolecule is represented by a rigid constellation of beads with |
101 | 127 | properties defined under `atoms` in the topology file. |
102 | | -The inter-molecular energy is calculated by summing all pairwise interactions |
103 | | -between beads using a customizable pair potential. |
| 128 | +The inter-molecular energy, $V(R,\Omega)$ is calculated by summing all pairwise interactions |
| 129 | +between beads using a customizable pair potential, $u_{ij}$. |
104 | 130 | If needed, different pair-potentials can be explicitly defined for |
105 | 131 | specific atom pairs. |
106 | 132 |
|
|
0 commit comments