-
-
Notifications
You must be signed in to change notification settings - Fork 1.5k
Open
Labels
Description
Description of the problem
Hi team,
I'm reading a Neuroscan file (cnt) and I have run into an error with the reader. I'm getting an OverflowError as seen below. I did some digging and I came across an issue in the past that seems very similar to this one (#12907).
It looks like it has something to do with numpy's move to v2. I was able to get the file to read when downgrading numpy==1.26.4, and it worked with mne==1.11.0.
Steps to reproduce
To reproduce, you will need numpy>=2.
import mne
raw = mne.io.read_raw_cnt("945flankers_ready.cnt")Link to data
https://huggingface.co/datasets/jalauer/Gruendler2009/blob/main/data/945flankers_ready.cnt
Expected results
>>> raw
<RawCNT | 945flankers_ready.cnt, 66 x 1166162 (2332.3 s), ~587.3 MiB, data loaded>Actual results
OverflowError Traceback (most recent call last)
File ~/miniforge3/envs/neuralset/lib/python3.12/site-packages/mne/io/cnt/cnt.py:545, in RawCNT.__init__(self, input_fname, eog, misc, ecg, emg, data_format, date_format, header, preload, verbose)
544 try:
--> 545 info, cnt_info = _get_cnt_info(
546 input_fname, eog, ecg, emg, misc, data_format, _date_format, header
547 )
548 except Exception:
File ~/miniforge3/envs/neuralset/lib/python3.12/site-packages/mne/io/cnt/cnt.py:346, in _get_cnt_info(input_fname, eog, ecg, emg, misc, data_format, date_format, header)
345 if data_format == "auto":
--> 346 if n_samples == 0 or data_size // (n_samples * n_channels) not in [2, 4]:
347 warn(
348 "Could not define the number of bytes automatically. "
349 "Defaulting to 2."
350 )
OverflowError: Python integer 8922283537 out of bounds for int32Additional information
In [2]: mne.sys_info()
Platform Linux-5.15.0-1061-nvidia-x86_64-with-glibc2.35
Python 3.12.11 | packaged by conda-forge | (main, Jun 4 2025, 14:45:31) [GCC 13.3.0]
Executable /private/home/teonbrooks/miniforge3/envs/neuralset/bin/python3.12
CPU Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz (80 cores)
Memory 754.5 GiB
Core
├☒ mne 1.9.0 (outdated, release 1.11.0 is available!)
├☑ numpy 2.3.2 (OpenBLAS 0.3.30 with 80 threads)
├☑ scipy 1.16.1
└☑ matplotlib 3.10.5 (backend=agg)
Numerical (optional)
├☑ sklearn 1.7.1
├☑ numba 0.63.1
├☑ nibabel 5.3.2
├☑ pandas 2.3.2
├☑ h5py 3.14.0
└☐ unavailable nilearn, dipy, openmeeg, cupy, h5io
Visualization (optional)
└☐ unavailable pyvista, pyvistaqt, vtk, qtpy, ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify
Ecosystem (optional)
├☑ mne-bids 0.16.0
├☑ pybv 0.7.6
└☐ unavailable mne-nirs, mne-features, mne-connectivity, mne-icalabel, mne-bids-pipeline, neo, eeglabio, edfio, mffpy