This repository was archived by the owner on May 10, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdrop_preprocessed.py
206 lines (162 loc) · 5.58 KB
/
drop_preprocessed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import shutil
from glob import glob
import numpy as np
import pandas as pd
import pickle
from config_preprocess import ConfigData
# Get a file list.
def data_loader(
base_path,
enb_id=None,
cell_id=None,
):
file_list = sorted(
glob(
os.path.join(
base_path,
"{ENB_ID}_{CELL_ID}_*.csv".format(
ENB_ID=enb_id,
CELL_ID=cell_id,
),
),
),
)
print('Found %s Files.' % len(file_list))
# Load it.
full_data = pd.concat(map(pd.read_csv, file_list))
data_tmidx = pd.to_datetime(
full_data['EVT_DTM'],
format='%Y%m%d%H%M%S'
)
full_data.set_index(data_tmidx, inplace=True)
# Drop the Duplicated.
full_data.drop_duplicates(
subset='EVT_DTM',
keep='last',
inplace=True,
)
return full_data
def datetime_setter(
data,
start_dt=None,
end_dt=None,
start_hour=None,
end_hour=None,
freq='10S',
):
full_datetime = pd.date_range(
start=str(start_dt),
end=str(end_dt),
freq=base_freq,
)
selected_datetime = full_datetime[
(int(start_hour) <= full_datetime.hour) &
(full_datetime.hour < int(end_hour))
]
tmp_table = pd.DataFrame([],
index=selected_datetime,
#columns=col_list,
)
joined = tmp_table.join(
data,
how='left',
sort=True,
)
if 'UE_CONN_TOT_CNT' in joined.columns:
joined['UE_CONN_TOT_CNT'] = joined['UE_CONN_TOT_CNT'].astype(
np.float32
)
return joined
def scaler(dataframe, col_range_dict=None, feature_range=(-1., 1.), c_idx_scale=False):
if c_idx_scale:
if set(dataframe.columns) - set(col_range_dict):
raise AttributeError("'col_real_range_dict' should be contains all columns in 'dataframe'")
else:
result_frame = dataframe.copy()
feature_max = feature_range[1]
feature_min = feature_range[0]
for col in dataframe.columns[:-1]: # last column X
real_min, real_max = col_range_dict[col]
scale = (feature_max-feature_min)/(real_max-real_min)
scaled_col = (result_frame[col]-real_min) * scale + feature_min
result_frame[col]= scaled_col
return result_frame
def unscaler(scaled, col_to_unscale, col_range_dict='../data/agg_data_5min_range_dict.p', feature_range=(-1., 1.)):
unscaled = scaled
with open(col_range_dict, 'rb') as f:
range_dict = pickle.load(f)
feature_max = feature_range[1]
feature_min = feature_range[0]
for i, col in enumerate(col_to_unscale):
real_min, real_max = range_dict[col]
scale = (feature_max-feature_min)/(real_max-real_min)
unscaled_col = (unscaled[:,i] - feature_min) / scale + real_min
unscaled[:,i] = unscaled_col
return unscaled
if __name__=="__main__":
config = ConfigData()
unique_cells = list(map(lambda enb_cell : enb_cell.split("_"), config.enb_cell_ids))
raw_file_path = config.raw_file_path
print("The number of cells for preprocessing: {}".format(len(unique_cells)))
# Read and Resample for each cell
cell_num = 0
total_targetday_data = []
for i in range(len(unique_cells)):
col_list = config.col_list
enb_id = unique_cells[cell_num][0]
cell_id = unique_cells[cell_num][1]
start_dt = config.start_dt
end_dt = config.end_dt
start_hour = config.start_hour
end_hour = config.end_hour
base_freq = config.base_freq
resample_freq = config.resample_freq
# Data Loading
data = data_loader(
base_path=raw_file_path,
enb_id=enb_id,
cell_id=cell_id,
)
# DatetimeIndex Setting
selected = datetime_setter(
data,
start_dt=start_dt,
end_dt=end_dt,
start_hour=start_hour,
end_hour=end_hour,
freq=base_freq,
)
# Resampling
resampled = selected.groupby(
pd.Grouper(freq='D')
)[col_list].resample(resample_freq).mean()
resampled.reset_index(level=0, drop=True, inplace=True)
daily_filled = resampled.groupby(pd.Grouper(freq='D'))[col_list].apply(
lambda grp: grp.ffill().bfill()
)
daily_filled = daily_filled.ffill().bfill()
daily_filled = daily_filled.fillna(0.)
daily_filled['CELL_NUM'] = cell_num
total_targetday_data.append(daily_filled)
cell_num += 1
result = pd.concat(total_targetday_data)
print("Read & Resampling finished")
if config.drop_resampled:
result.to_csv('../data/{}'.format("aggregated_resampled.csv"), encoding='utf-8')
print("Starting scaling process")
# Scaling
data_np = result[col_list].values
mins = np.min(data_np, axis=0)
maxs = np.max(data_np, axis=0)
col_range_dict = {}
for i, col in enumerate(col_list):
col_range_dict[col] = [mins[i], maxs[i]]
scaling_range = config.scaling_range
full_scaled = scaler(result, col_range_dict=col_range_dict, feature_range=scaling_range)
print("Scaling process finished")
# Drop scaled
full_scaled.to_csv('../data/{}'.format(config.output_path), encoding='utf-8')
col_range_dict_name = "_".join(config.output_path.split("_")[:-1]+["range_dict.p"])
with open('../data/{}'.format(col_range_dict_name), 'wb') as f:
pickle.dump(col_range_dict, f)