-
Notifications
You must be signed in to change notification settings - Fork 193
/
Copy pathtest_SVM_one_vs_one.m
492 lines (380 loc) · 15.2 KB
/
test_SVM_one_vs_one.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Given the data as (data, label) and a trained classifier, this function:
% evaluated the classifier over the input data and return de performance
% measures follows the AAMI recomendations.
%
% Author: Mondejar Guerra, Victor M
% VARPA
% University of A Coruña
% 26 June 2017
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [performance_measures, output] = test_SVM(num_classes, standardization, unit_vector, models_SVM, media, st_desviation, data, label, dir_path, C)
counter_class = zeros(size(data, 1), num_classes);
%result = zeros(num_classes, num_classes);
%predicted_labels = zeros(num_classes, num_classes);
if(standardization)
for(i=1:size(data, 2))% for each feature
data(:, i) = (data(:, i) - media(i)) / st_desviation(i);
end
end
% Perform the unit vector so the length vector == 1 to all instances
if(unit_vector)
for(i=1:size(tdata,1))
data(i,:) = data(i,:)/ norm(data(i,:));
end
end
%% One vs One
%% 1 - 2 N vs S
%% 1 - 3 N vs V
%% 1 - 4 N vs F
%% 2 - 3 S vs V
%% 2 - 4 S vs F
%% 3 - 4 V vs F
counter_class = zeros(size(data, 1), num_classes);
predicted_labels = [];
probs = [];
index = 0;
for(k=1:num_classes-1)
for(kk= k+1:num_classes )
index = index + 1;
[predicted_label, accuracy, prob] = svmpredict(ones(size(data, 1), 1), data, models_SVM{index}, ' -q'); % -b 1
% Puede que los valores de prob se deban a los weights...
%predicted_labels = [predicted_labels; predicted_label];
%TODO dejarlo como un bucle que incremente en evz de uno, la prob correspondiente en cada caso
counter_class(find(predicted_label == 1),k) = counter_class(find(predicted_label == 1),k) +1;
counter_class(find(predicted_label == -1),kk) = counter_class(find(predicted_label == -1),kk) +1;
% for i=1:length(predicted_label)
% if(predicted_label(i) == 1)
% counter_class(i, k) = counter_class(i, k) + prob(i, 1);
% else
% if k == 1
% counter_class(i, kk) = counter_class(i, kk) + prob(i, 2);
% else
% counter_class(i, kk) = counter_class(i, kk) + prob(i, 2);
% end
% end
% end
predicted_label_by_class{index} = predicted_label;
probs{index} = prob;
end
end
for(i = 1: size(data, 1))
% Check max class voting
counter_class_r = counter_class(i,:);
maximum = max(counter_class_r);
selected_class = find(counter_class_r == maximum);
if( size(selected_class, 2) > 1)
%% TODO: think this step again!
% if draw happen (more than one class with maximum votes)
% check the comparison between both classes
%if(result(selected_class(1), selected_class(2)) == 1)
% selected_class = selected_class(1);
%else
% selected_class = selected_class(2);
%end
selected_class = 1;
end
output(i) = selected_class;
end
%% COMPUTE PERFORMANCE MEASURES EVALUATION FROM AAMI RECOMENDATIONS
%performance_measures_per_record = evaluation_AAMI_per_record(output, label_per_record);
performance_measures = evaluation_AAMI(output, label);
% Write score
% Also: Export predictions, probs, and counter_class to do late-fusion
[fleiss_kappa_DS2, kappa_DS2, prob_expected_DS2, prob_observed_DS2] = write_to_file(performance_measures, dir_path, C, counter_class, probs, label);
% Fleiss Kappa as measure for best configuration
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% name: evaluation_AAMI
% inputs: output, ground_truth
%
% Validate the learning algorithm following the AAMI recommendations for
% gross data. Using sensivity (recall), specificity (precision) and
% accuracy for each class: N, SVEB, VEB, F.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [performance_measures, output] = evaluation_AAMI(output, ground_truth)
num_classes = 4; % 5
%% Compute only one confussion matrix for gross
% Compute confussion matrix
confussion_matrix = zeros(4,4);
for(i = 1: size(output,2))
if(ground_truth(i) <= num_classes) % NOTE: for not consider Q class
confussion_matrix(ground_truth(i), output(i)) = confussion_matrix(ground_truth(i), output(i))+1;
end
end
sum_all = sum(sum(confussion_matrix));
confussion_matrix;
Nn = confussion_matrix(1, 1);
Ns = confussion_matrix(1, 2);
Nv = confussion_matrix(1, 3);
Nf = confussion_matrix(1, 4);
Sn = confussion_matrix(2, 1);
Ss = confussion_matrix(2, 2);
Sv = confussion_matrix(2, 3);
Sf = confussion_matrix(2, 4);
Vn = confussion_matrix(3, 1);
Vs = confussion_matrix(3, 2);
Vv = confussion_matrix(3, 3);
Vf = confussion_matrix(3, 4);
Fn = confussion_matrix(4, 1);
Fs = confussion_matrix(4, 2);
Fv = confussion_matrix(4, 3);
Ff = confussion_matrix(4, 4);
%% N
TNn = Ss + Sv + Sf + Vs + Vv + Vf + Fs + Fv + Ff;
FNn = Ns + Nv + Nf;
TPn = Nn;
FPn = Sn + Vn + Fn;
Recall_N = TPn / (TPn + FNn);
Precision_N = TPn / (TPn + FPn);
Specificity_N = TNn / (TNn + FPn); % 1-FPR
FPR_N = FPn / (TNn + FPn);
Acc_N = (TPn + TNn) / (TPn + TNn + FPn + FNn);
%% SVEB
TNs = Nn + Nv + Nf + Vn + Vv + Vf + Fn + Fv + Ff;
FNs = Sn + Sv + Sf;
TPs = Ss;
FPs = Ns + Vs + Fs;
Recall_SVEB = TPs / (TPs + FNs);
Precision_SVEB = TPs / (TPs + FPs);
FPR_SVEB = FPs / (TNs + FPs);
Acc_SVEB = (TPs + TNs) / (TPs + TNs + FPs + FNs);
%% VEB
TNv = Nn + Ns + Nf + Sn + Ss + Sf + Fn + Fs + Ff;
FNv = Vn + Vs + Vf;
TPv = Vv;
FPv = Nv + Sv; %Fv
Recall_VEB = TPv / (TPv + FNv);
Precision_VEB = TPv / (TPv + FPv);
FPR_VEB = FPv / (TNv + FPv);
Acc_VEB = (TPv + TNv) / (TPv + TNv + FPv + FNv);
%% F
TNf = Nn + Ns + Nv + Sn + Ss + Sv + Vn + Vs + Vv;
FNf = Fn + Fs + Fv;
TPf = Ff;
FPf = Nf + Sf + Vf;
Recall_F = TPf / (TPf + FNf);
Precision_F = TPf / (TPf + FPf);
FPR_F = FPf / (TNf + FPf);
Acc_F = (TPf + TNf) / (TPf + TNf + FPf + FNf);
%% Overall ACC
Acc = (TPn + TPs + TPv + TPf) / sum_all;
%% Print results
performance_measures.Recall_N = Recall_N;
performance_measures.Recall_SVEB = Recall_SVEB;
performance_measures.Recall_VEB = Recall_VEB;
performance_measures.Recall_F = Recall_F;
performance_measures.Precision_N = Precision_N;
performance_measures.Precision_SVEB = Precision_SVEB;
performance_measures.Precision_VEB = Precision_VEB;
performance_measures.Precision_F = Precision_F;
performance_measures.FPR_N = FPR_N;
performance_measures.FPR_SVEB = FPR_SVEB;
performance_measures.FPR_VEB = FPR_VEB;
performance_measures.FPR_F = FPR_F;
performance_measures.Acc_N = Acc_N;
performance_measures.Acc_SVEB = Acc_SVEB;
performance_measures.Acc_VEB = Acc_VEB;
performance_measures.Acc_F = Acc_F;
performance_measures.Acc = Acc;
performance_measures.confussion_matrix = confussion_matrix;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% name: evaluation_AAMI_per_record
% inputs: output, gt_per_record
%
% Validate the learning algorithm following the AAMI recommendations for
% each record. Using sensivity (recall), specificity (precision) and
% accuracy for each class: N, SVEB, VEB, F.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function performance_measures = evaluation_AAMI_per_record(output, gt_per_record)
num_classes = 4; % 5
j = 0;
for t=1:size(gt_per_record,2)
% Compute confussion matrix
confussion_matrix = zeros(4,4);
for(i = 1: size(gt_per_record{t}, 2))
j = j+1;
if(gt_per_record{t}(i) <= num_classes) % NOTE: for not consider Q class
confussion_matrix(gt_per_record{t}(i), output(j)) = confussion_matrix(gt_per_record{t}(i), output(j))+1;
end
end
sum_all = sum(sum(confussion_matrix));
Nn = confussion_matrix(1, 1);
Ns = confussion_matrix(1, 2);
Nv = confussion_matrix(1, 3);
Nf = confussion_matrix(1, 4);
Sn = confussion_matrix(2, 1);
Ss = confussion_matrix(2, 2);
Sv = confussion_matrix(2, 3);
Sf = confussion_matrix(2, 4);
Vn = confussion_matrix(3, 1);
Vs = confussion_matrix(3, 2);
Vv = confussion_matrix(3, 3);
Vf = confussion_matrix(3, 4);
Fn = confussion_matrix(4, 1);
Fs = confussion_matrix(4, 2);
Fv = confussion_matrix(4, 3);
Ff = confussion_matrix(4, 4);
%% N
TNn = Ss + Sv + Sf + Vs + Vv + Vf + Fs + Fv + Ff;
FNn = Ns + Nv + Nf;
TPn = Nn;
FPn = Sn + Vn + Fn;
Recall_N{t} = TPn / (TPn + FNn);
Precision_N{t} = TPn / (TPn + FPn);
FPR_N{t} = FPn / (TNn + FPn);
Acc_N{t} = (TPn + TNn) / (TPn + TNn + FPn + FNn);
%% SVEB
TNs = Nn + Nv + Nf + Vn + Vv + Vf + Fn + Fv + Ff;
FNs = Sn + Sv + Sf;
TPs = Ss;
FPs = Ns + Vs + Fs;
Recall_SVEB{t} = TPs / (TPs + FNs);
Precision_SVEB{t} = TPs / (TPs + FPs);
FPR_SVEB{t} = FPs / (TNs + FPs);
Acc_SVEB{t} = (TPs + TNs) / (TPs + TNs + FPs + FNs);
%% VEB
TNv = Nn + Ns + Nf + Sn + Ss + Sf + Fn + Fs + Ff;
FNv = Vn + Vs + Vf;
TPv = Vv;
FPv = Nv + Sv; %Fv;
Recall_VEB{t} = TPv / (TPv + FNv);
Precision_VEB{t} = TPv / (TPv + FPv);
FPR_VEB{t} = FPv / (TNv + FPv);
Acc_VEB{t} = (TPv + TNv) / (TPv + TNv + FPv + FNv);
%% F
TNf = Nn + Ns + Nv + Sn + Ss + Sv + Vn + Vs + Vv;
FNf = Fn + Fs + Fv;
TPf = Ff;
FPf = Nf + Sf + Vf;
Recall_F{t} = TPf / (TPf + FNf);
Precision_F{t} = TPf / (TPf + FPf);
FPR_F{t} = FPf / (TNf + FPf);
Acc_F{t} = (TPf + TNf) / (TPf + TNf + FPf + FNf);
%% Overal ACC
Acc{t} = (TPn + TPs + TPv + TPf) / sum_all;
end
performance_measures.Recall_N = Recall_N;
performance_measures.Recall_SVEB = Recall_SVEB;
performance_measures.Recall_VEB = Recall_VEB;
performance_measures.Recall_F = Recall_F;
performance_measures.Precision_N = Precision_N;
performance_measures.Precision_SVEB = Precision_SVEB;
performance_measures.Precision_VEB = Precision_VEB;
performance_measures.Precision_F = Precision_F;
performance_measures.FPR_N = FPR_N;
performance_measures.FPR_SVEB = FPR_SVEB;
performance_measures.FPR_VEB = FPR_VEB;
performance_measures.FPR_F = FPR_F;
performance_measures.Acc_N = Acc_N;
performance_measures.Acc_SVEB = Acc_SVEB;
performance_measures.Acc_VEB = Acc_VEB;
performance_measures.Acc_F = Acc_F;
performance_measures.Acc = Acc;
end
% Compute and save performance measures into a file
function [kappaF, kappa, prob_expected, prob_observed] = write_to_file(performance_measures, dir_path, C, counter_class, probs, label_gt)
cm = performance_measures.confussion_matrix;
[kappa, prob_expected, prob_observed] = compute_cohen_kappa(cm);
[kappaF, prob_expectedF, prob_observedF] = compute_fleiss_kappa(cm);
%% Optimization of ECG Classification by Means of Feature Selection (Mar)
%J index
Ij = performance_measures.Recall_SVEB + performance_measures.Recall_VEB + performance_measures.Precision_SVEB + performance_measures.Precision_VEB;
w1 = 0.5;
w2 = 0.125;
Ijk = w1 * kappa + w2 * Ij;
output_name = [dir_path, 'score_', num2str(Ijk, '% 1.3f'), '_C_', num2str(C), '.txt'];
fid = fopen(output_name,'w');
fprintf(fid, 'Confussion Matrix \n');
for( i = 1:size(cm,1))
fprintf(fid, '%d %d %d %d\n', cm(i,:));
end
fprintf(fid, '\nMar scores Ijk: %f\n', Ijk);
fprintf(fid, 'Ij: %f (max 4)\n', Ij);
fprintf(fid, '\nCohen Kappa Values: %f\n', kappa);
fprintf(fid, 'Prob expected: %f\n', prob_expected);
fprintf(fid, 'Prob Observed (Overal Acc): %f\n', prob_observed);
fprintf(fid, '\nFleiss Kappa Values: %f\n', kappaF);
fprintf(fid, 'Prob expected: %f\n', prob_expectedF);
fprintf(fid, 'Prob Observed: %f\n', prob_observedF);
fprintf(fid, '\nG-mean (Geometric mean)\n');
%% TODO for each binary classifier, then average g-means
fprintf(fid, '\nRecall\n');
fprintf(fid, '%f %f %f %f\n', [performance_measures.Recall_N, performance_measures.Recall_SVEB, performance_measures.Recall_VEB, performance_measures.Recall_F]);
fprintf(fid, '\nPrecision\n');
fprintf(fid, '%f %f %f %f\n', [performance_measures.Precision_N, performance_measures.Precision_SVEB, performance_measures.Precision_VEB, performance_measures.Precision_F]);
fprintf(fid, '\nFPR\n');
fprintf(fid, '%f %f %f %f\n', [performance_measures.FPR_N, performance_measures.FPR_SVEB, performance_measures.FPR_VEB, performance_measures.FPR_F]);
% NOTE: El acc por clase es mala medida. Al existir tanto desbalanceo si se
% deja una clase a 0 se obtiene un buen Acc debido al bajo numero de FN
% respecto TN
% fprintf(fid, '\nAcc\n');
% fprintf(fid, '%f %f %f %f\n', [performance_measures.Acc_N, performance_measures.Acc_SVEB, performance_measures.Acc_VEB, performance_measures.Acc_F]);
% AVG sensivity(recall), specificity, accuracy, +P
avg_recall = sum([performance_measures.Recall_N, performance_measures.Recall_SVEB, performance_measures.Recall_VEB, performance_measures.Recall_F]) / 4;
avg_precision = sum([performance_measures.Precision_N, performance_measures.Precision_SVEB, performance_measures.Precision_VEB, performance_measures.Precision_F]) / 4;
avg_specificity = sum([ 1 - performance_measures.FPR_N, 1 - performance_measures.FPR_SVEB, 1 - performance_measures.FPR_VEB, 1 - performance_measures.FPR_F])/ 4;
% avg_acc = sum([performance_measures.Acc_N, performance_measures.Acc_SVEB, performance_measures.Acc_VEB, performance_measures.Acc_F]) / 4;
fprintf(fid, '\nAVG values sum(classes) / num_classes\nRecall Precision Specificity\n');
fprintf(fid, '%f %f %f %f\n', [avg_recall, avg_precision, avg_specificity]);
fclose(fid);
save([dir_path, 'predictions_C_', num2str(C), '.mat'], 'counter_class', 'probs', 'label_gt');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute Cohen' kappa from a confussion matrix
% Kappa value:
% < 0.20 Poor
% 0.21-0.40 Fair
% 0.41-0.60 Moderate
% 0.61-0.80 Good
% 0.81-1.00 Very good
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [kappa, prob_expected, prob_observed] = compute_cohen_kappa(cm)
prob_expectedA = [];
prob_expectedB = [];
prob_observed = 0;
for(n = 1:size(cm,1))
prob_expectedA(n) = sum(cm(n,:))/sum(sum(cm));
prob_expectedB(n) = sum(cm(:,n))/sum(sum(cm));
prob_observed = prob_observed + cm(n,n);
end
prob_expected = sum(prob_expectedA .* prob_expectedB);
prob_observed = prob_observed / sum(sum(cm));
kappa = (prob_observed - prob_expected) / (1 - prob_expected);
end
% Fleiss Kappa
function [kappa, prob_expected, prob_observed] = compute_fleiss_kappa(cm)
prob_i = [];
prob_i = [];
prob_observed = 0;
for(n = 1:size(cm,2))
prob_j(n) = sum(cm(:,n))/sum(sum(cm));
end
for(m = 1:size(cm,1))
prob_i(m) = 0;
if(m > 1)
for(n = 1:size(cm,2))
prob_i(m) = prob_i(m) + cm(m,n) * cm(m,n);
end
prob_i(m) = (prob_i(m) - sum(cm(m-1,:))) / ( sum(cm(m-1,:)) * (sum(cm(m-1,:))-1));
else
prob_i(m) = 1.0;
end
end
prob_expected = sum(prob_j .* prob_j);
prob_observed = sum(prob_i) / size(cm,1);
kappa = (prob_observed - prob_expected) / (1 - prob_expected);
end
function [k, sum_diag, PD, XTot] = compute_kappa_mar(cm)
sum_diag = 0;
PD = 0;
XTot = sum(sum(cm));
for(n = 1:size(cm,1))
sum_diag = sum_diag + cm(n,n);
OI = sum(cm(n, :));
AI = sum(cm(:, n));
PD = PD + (OI * AI)/ XTot;
end
k = (sum_diag - PD ) / (XTot - PD);
end