Skip to content

Commit 4655df7

Browse files
committed
add blog article
1 parent f668ea4 commit 4655df7

File tree

1 file changed

+196
-0
lines changed

1 file changed

+196
-0
lines changed
Lines changed: 196 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,196 @@
1+
# **Building an Intelligent Documentation Assistant with MongoDB-RAG**
2+
3+
### *by Michael Lynn, Developer Advocate @ MongoDB*
4+
📌 [GitHub](https://github.com/mrlynn) | 🛠️ [MongoDB-RAG Docs](https://mongodb.github.io/mongo-rag/)
5+
6+
---
7+
8+
## **📖 TL;DR**
9+
Ever wished your documentation could just *answer questions* directly instead of forcing users to sift through endless pages? That’s exactly what we built with the **MongoDB-RAG Documentation Assistant**. In this article, I’ll walk you through the **why, what, and how** of building a chatbot that retrieves precise, relevant information from MongoDB-RAG’s own documentation.
10+
11+
### **🤔 Why Build a Documentation Assistant?**
12+
Traditional documentation search is useful, but it often leaves users with *more questions than answers*. Developers need to read through entire pages, infer context, and piece together solutions. Instead, we wanted something:
13+
14+
**Conversational** – Answers questions in natural language
15+
**Context-aware** – Finds relevant documentation snippets instead of just keywords
16+
**Fast & Accurate** – Uses vector search to surface precise answers
17+
**Transparent** – Links to original sources so users can verify answers
18+
**Scalable** – Handles multiple LLM providers, including **OpenAI** and **Ollama**
19+
20+
Our solution? **A chatbot powered by MongoDB-RAG**, showcasing exactly what our tool was built for: **retrieval-augmented generation (RAG)** using **MongoDB Atlas Vector Search**.
21+
22+
---
23+
24+
## **🛠️ How We Built It**
25+
We structured the assistant around four core components:
26+
27+
### **1️⃣ Document Ingestion**
28+
To make documentation *searchable*, we need to process it into vector embeddings. We use **semantic chunking** to break long docs into meaningful pieces before ingestion.
29+
30+
```javascript
31+
const chunker = new Chunker({
32+
strategy: 'semantic',
33+
maxChunkSize: 500,
34+
overlap: 50
35+
});
36+
37+
const documents = await loadMarkdownFiles('./docs');
38+
const chunks = await Promise.all(
39+
documents.map(doc => chunker.chunkDocument(doc))
40+
);
41+
42+
await rag.ingestBatch(chunks.flat());
43+
```
44+
45+
> 📝 **Why Semantic Chunking?** Instead of blindly splitting text, we preserve contextual integrity by overlapping related sections.
46+
47+
---
48+
49+
### **2️⃣ Vector Search with MongoDB Atlas**
50+
Once ingested, we use **MongoDB Atlas Vector Search** to find the most relevant documentation snippets based on a user’s query.
51+
52+
```javascript
53+
const searchResults = await rag.search(query, {
54+
maxResults: 6,
55+
filter: { 'metadata.type': 'documentation' }
56+
});
57+
```
58+
59+
MongoDB’s **$vectorSearch** operator ensures we retrieve the closest matching content, ranked by relevance.
60+
61+
---
62+
63+
### **3️⃣ Streaming Responses for a Real Chat Experience**
64+
To improve user experience, we stream responses incrementally as they’re generated.
65+
66+
```javascript
67+
router.post('/chat', async (req, res) => {
68+
const { query, history = [], stream = true } = req.body;
69+
70+
const context = await ragService.search(query);
71+
72+
if (stream) {
73+
res.writeHead(200, {
74+
'Content-Type': 'text/event-stream',
75+
'Cache-Control': 'no-cache',
76+
'Connection': 'keep-alive'
77+
});
78+
79+
await llmService.generateResponse(query, context, history, res);
80+
} else {
81+
const answer = await llmService.generateResponse(query, context, history);
82+
res.json({ answer, sources: context });
83+
}
84+
});
85+
```
86+
87+
With this approach:
88+
- Responses appear **in real-time** instead of waiting for full generation 🚀
89+
- Developers can get **partial answers** quickly while longer responses load
90+
91+
---
92+
93+
### **4️⃣ Multi-Provider LLM Support**
94+
The assistant supports **multiple embedding providers**, including OpenAI and **self-hosted Ollama**.
95+
96+
```javascript
97+
const config = {
98+
embedding: {
99+
provider: process.env.EMBEDDING_PROVIDER || 'openai',
100+
model: process.env.EMBEDDING_MODEL || 'text-embedding-3-small',
101+
baseUrl: process.env.OLLAMA_BASE_URL // For local deployment
102+
}
103+
};
104+
```
105+
106+
This allows users to **switch providers** easily, optimizing for performance, privacy, or cost.
107+
108+
---
109+
110+
## **💡 Key Features**
111+
112+
### 🔍 **Real-time Context Retrieval**
113+
Instead of guessing, the chatbot **searches first** and then generates answers.
114+
115+
### 🔗 **Source Attribution**
116+
Each response includes a **link to the documentation**, letting users verify answers.
117+
118+
### **Streaming Responses**
119+
No waiting! Answers **generate in real-time**, improving responsiveness.
120+
121+
### ⚙️ **Multi-Provider LLM Support**
122+
Deploy with **OpenAI for scale** or **Ollama for private, local hosting**.
123+
124+
### 🤖 **Fallback Handling**
125+
If documentation doesn’t contain an answer, the chatbot **transparently explains the limitation** instead of fabricating responses.
126+
127+
---
128+
129+
## **🚀 Try It Yourself**
130+
Want to build a **MongoDB-RAG-powered assistant**? Here’s how to get started:
131+
132+
### **1️⃣ Install MongoDB-RAG**
133+
```bash
134+
npm install mongodb-rag
135+
```
136+
137+
### **2️⃣ Configure Your Environment**
138+
```env
139+
MONGODB_URI=your_atlas_connection_string
140+
EMBEDDING_PROVIDER=openai
141+
EMBEDDING_API_KEY=your_api_key
142+
EMBEDDING_MODEL=text-embedding-3-small
143+
```
144+
145+
### **3️⃣ Initialize the Chatbot**
146+
```javascript
147+
import { MongoRAG } from 'mongodb-rag';
148+
import express from 'express';
149+
150+
const rag = new MongoRAG(config);
151+
const app = express();
152+
153+
app.post('/api/chat', async (req, res) => {
154+
const { query } = req.body;
155+
const results = await rag.search(query);
156+
res.json({ answer: results });
157+
});
158+
```
159+
160+
---
161+
162+
## **🌩️ Production Considerations**
163+
### **Where to Host?**
164+
We deployed our assistant on **Vercel** for:
165+
- **Serverless scalability**
166+
- **Fast global CDN**
167+
- **Easy Git-based deployments**
168+
169+
### **Which LLM for Production?**
170+
- **OpenAI** – Best for reliability & speed
171+
- **Ollama** – Best for **privacy-first** self-hosted setups
172+
173+
```env
174+
EMBEDDING_PROVIDER=openai
175+
EMBEDDING_MODEL=text-embedding-3-small
176+
```
177+
178+
---
179+
180+
## **🔮 What’s Next?**
181+
Future improvements include:
182+
- **Better query reformulation** to improve retrieval accuracy
183+
- **User feedback integration** to refine responses over time
184+
- **Conversation memory** for context-aware follow-ups
185+
186+
---
187+
188+
## **🎬 Conclusion**
189+
By combining **MongoDB Atlas Vector Search** with **modern LLMs**, we built an assistant that **transforms documentation into an interactive experience**.
190+
191+
Try it out in our docs, and let us know what you think! 🚀
192+
193+
### 🔗 **Resources**
194+
📘 [MongoDB-RAG Docs](https://mongodb.github.io/mongo-rag/)
195+
🔗 [GitHub Repository](https://github.com/mongodb-developer/mongodb-rag)
196+
📦 [NPM Package](https://www.npmjs.com/package/mongodb-rag)

0 commit comments

Comments
 (0)