|
| 1 | +# Owner(s): ["module: onnx"] |
| 2 | +"""Unit tests for the _compat module.""" |
| 3 | + |
| 4 | +from __future__ import annotations |
| 5 | + |
| 6 | +import torch |
| 7 | +from torch.onnx._internal.exporter import _compat |
| 8 | +from torch.testing._internal import common_utils |
| 9 | +from torch.utils import _pytree |
| 10 | + |
| 11 | + |
| 12 | +class SingnatureOnlyLlamaModel(torch.nn.Module): |
| 13 | + def forward( |
| 14 | + self, |
| 15 | + input_ids: torch.LongTensor = None, |
| 16 | + attention_mask: torch.Tensor | None = None, |
| 17 | + position_ids: torch.LongTensor | None = None, |
| 18 | + past_key_values: list[torch.FloatTensor] | None = None, |
| 19 | + inputs_embeds: torch.FloatTensor | None = None, |
| 20 | + labels: torch.LongTensor | None = None, |
| 21 | + use_cache: bool | None = None, |
| 22 | + output_attentions: bool | None = None, |
| 23 | + output_hidden_states: bool | None = None, |
| 24 | + return_dict: bool | None = None, |
| 25 | + cache_position: torch.LongTensor | None = None, |
| 26 | + num_logits_to_keep: int = 0, |
| 27 | + **kwargs, |
| 28 | + ): |
| 29 | + pass |
| 30 | + |
| 31 | + |
| 32 | +@common_utils.instantiate_parametrized_tests |
| 33 | +class TestPyTreeDynamicAxesShapes(common_utils.TestCase): |
| 34 | + # The test can't be parametrized because the torch.export.Dim generates objects, |
| 35 | + # and we need the exact same object to compare them. |
| 36 | + def test__unflatten_dynamic_shapes_with_inputs_tree_succeeds_on_tuple(self): |
| 37 | + inputs = (torch.randn(1, 2, 3), torch.randn(1, 2, 3)) |
| 38 | + x_dim = torch.export.Dim("x_dim_0") |
| 39 | + y_dim = torch.export.Dim("y_dim_1") |
| 40 | + dynamic_shapes = { |
| 41 | + "x": {0: x_dim}, |
| 42 | + "y": {1: y_dim}, |
| 43 | + } |
| 44 | + unflatten_dynamic_shapes = _compat._unflatten_dynamic_shapes_with_inputs_tree( |
| 45 | + inputs, dynamic_shapes |
| 46 | + ) |
| 47 | + |
| 48 | + expected_dynamic_shapes = ( |
| 49 | + {0: x_dim}, |
| 50 | + {1: y_dim}, |
| 51 | + ) |
| 52 | + self.assertEqual(unflatten_dynamic_shapes, expected_dynamic_shapes) |
| 53 | + |
| 54 | + def test__unflatten_dynamic_shapes_with_inputs_tree_succeeds_on_dict(self): |
| 55 | + inputs = {"x": torch.randn(1, 2, 3), "y": torch.randn(1, 2, 3)} |
| 56 | + x_dim = torch.export.Dim("x_dim_0") |
| 57 | + y_dim = torch.export.Dim("y_dim_1") |
| 58 | + dynamic_shapes = { |
| 59 | + "x": {0: x_dim}, |
| 60 | + "y": {1: y_dim}, |
| 61 | + } |
| 62 | + unflatten_dynamic_shapes = _compat._unflatten_dynamic_shapes_with_inputs_tree( |
| 63 | + inputs, dynamic_shapes |
| 64 | + ) |
| 65 | + |
| 66 | + expected_dynamic_shapes = { |
| 67 | + "x": {0: x_dim}, |
| 68 | + "y": {1: y_dim}, |
| 69 | + } |
| 70 | + self.assertEqual(unflatten_dynamic_shapes, expected_dynamic_shapes) |
| 71 | + |
| 72 | + def test__unflatten_dynamic_shapes_with_inputs_tree_succeeds_on_tuple_of_mixed_structure( |
| 73 | + self, |
| 74 | + ): |
| 75 | + inputs = ( |
| 76 | + torch.randn(1, 2, 3), |
| 77 | + ({"x0": torch.randn(1, 2, 3)}, {"x1": torch.randn(1, 2, 3)}), |
| 78 | + (torch.randn(1, 2, 3), torch.randn(1, 2, 3)), |
| 79 | + [torch.randn(1, 2, 3), torch.randn(1, 2, 3)], |
| 80 | + ) |
| 81 | + w_dim_0 = torch.export.Dim("w_dim_0") |
| 82 | + x0_dim_1 = torch.export.Dim("x0_dim_1") |
| 83 | + x0_dim_2 = torch.export.Dim("x0_dim_2") |
| 84 | + x1_dim_1 = torch.export.Dim("x1_dim_1") |
| 85 | + y0_dim_0 = torch.export.Dim("y0_dim_0") |
| 86 | + y0_dim_1 = torch.export.Dim("y0_dim_1") |
| 87 | + y1_dim_2 = torch.export.Dim("y1_dim_2") |
| 88 | + z0_dim_2 = torch.export.Dim("z0_dim_2") |
| 89 | + z1_dim_1 = torch.export.Dim("z1_dim_1") |
| 90 | + dynamic_shapes = { |
| 91 | + "w": {0: w_dim_0}, |
| 92 | + "x0": {1: x0_dim_1, 2: x0_dim_2}, |
| 93 | + "x1": {1: x1_dim_1}, |
| 94 | + "y0": {0: y0_dim_0, 1: y0_dim_1}, |
| 95 | + "y1": {2: y1_dim_2}, |
| 96 | + "z0": {2: z0_dim_2}, |
| 97 | + "z1": {1: z1_dim_1}, |
| 98 | + } |
| 99 | + unflatten_dynamic_shapes = _compat._unflatten_dynamic_shapes_with_inputs_tree( |
| 100 | + inputs, dynamic_shapes |
| 101 | + ) |
| 102 | + expected_dynamic_shapes = ( |
| 103 | + {0: w_dim_0}, |
| 104 | + ({"x0": {1: x0_dim_1, 2: x0_dim_2}}, {"x1": {1: x1_dim_1}}), |
| 105 | + ({0: y0_dim_0, 1: y0_dim_1}, {2: y1_dim_2}), |
| 106 | + [{2: z0_dim_2}, {1: z1_dim_1}], |
| 107 | + ) |
| 108 | + self.assertEqual(unflatten_dynamic_shapes, expected_dynamic_shapes) |
| 109 | + |
| 110 | + @common_utils.parametrize( |
| 111 | + "model, args, kwargs,input_names, output_names, dynamic_axes, expected_dynamic_shapes", |
| 112 | + [ |
| 113 | + # llama-3.2-1B-Instruct (trimmed) |
| 114 | + ( |
| 115 | + SingnatureOnlyLlamaModel(), |
| 116 | + (), |
| 117 | + { |
| 118 | + "input_ids": torch.randn(2, 16), |
| 119 | + "attention_mask": torch.randn(2, 32), |
| 120 | + "position_ids": torch.randn(2, 16), |
| 121 | + "past_key_values": [ |
| 122 | + (torch.randn(2, 8, 16, 64), torch.randn(2, 8, 16, 64)), |
| 123 | + (torch.randn(2, 8, 16, 64), torch.randn(2, 8, 16, 64)), |
| 124 | + ], |
| 125 | + }, |
| 126 | + [ |
| 127 | + "input_ids", |
| 128 | + "attention_mask", |
| 129 | + "position_ids", |
| 130 | + "past_key_values.0.key", |
| 131 | + "past_key_values.0.value", |
| 132 | + "past_key_values.1.key", |
| 133 | + "past_key_values.1.value", |
| 134 | + ], |
| 135 | + [ |
| 136 | + "logits", |
| 137 | + "present.0.key", |
| 138 | + "present.0.value", |
| 139 | + "present.1.key", |
| 140 | + "present.1.value", |
| 141 | + ], |
| 142 | + { |
| 143 | + "input_ids": {0: "batch_size", 1: "sequence_length"}, |
| 144 | + "attention_mask": { |
| 145 | + 0: "batch_size", |
| 146 | + 1: "past_sequence_length + sequence_length", |
| 147 | + }, |
| 148 | + "position_ids": {0: "batch_size", 1: "sequence_length"}, |
| 149 | + "past_key_values.0.key": { |
| 150 | + 0: "batch_size", |
| 151 | + 2: "past_sequence_length", |
| 152 | + }, |
| 153 | + "past_key_values.0.value": { |
| 154 | + 0: "batch_size", |
| 155 | + 2: "past_sequence_length", |
| 156 | + }, |
| 157 | + "past_key_values.1.key": { |
| 158 | + 0: "batch_size", |
| 159 | + 2: "past_sequence_length", |
| 160 | + }, |
| 161 | + "past_key_values.1.value": { |
| 162 | + 0: "batch_size", |
| 163 | + 2: "past_sequence_length", |
| 164 | + }, |
| 165 | + "logits": {0: "batch_size", 1: "sequence_length"}, |
| 166 | + "present.0.key": { |
| 167 | + 0: "batch_size", |
| 168 | + 2: "past_sequence_length + sequence_length", |
| 169 | + }, |
| 170 | + "present.0.value": { |
| 171 | + 0: "batch_size", |
| 172 | + 2: "past_sequence_length + sequence_length", |
| 173 | + }, |
| 174 | + "present.1.key": { |
| 175 | + 0: "batch_size", |
| 176 | + 2: "past_sequence_length + sequence_length", |
| 177 | + }, |
| 178 | + "present.1.value": { |
| 179 | + 0: "batch_size", |
| 180 | + 2: "past_sequence_length + sequence_length", |
| 181 | + }, |
| 182 | + }, |
| 183 | + [ |
| 184 | + { |
| 185 | + 0: torch.export.Dim("batch_size"), |
| 186 | + 1: torch.export.Dim("sequence_length"), |
| 187 | + }, |
| 188 | + { |
| 189 | + 0: torch.export.Dim("batch_size"), |
| 190 | + 1: torch.export.Dim("past_sequence_lengthsequence_length"), |
| 191 | + }, |
| 192 | + { |
| 193 | + 0: torch.export.Dim("batch_size"), |
| 194 | + 1: torch.export.Dim("sequence_length"), |
| 195 | + }, |
| 196 | + [ |
| 197 | + ( |
| 198 | + { |
| 199 | + 0: torch.export.Dim("batch_size"), |
| 200 | + 2: torch.export.Dim("past_sequence_length"), |
| 201 | + }, |
| 202 | + { |
| 203 | + 0: torch.export.Dim("batch_size"), |
| 204 | + 2: torch.export.Dim("past_sequence_length"), |
| 205 | + }, |
| 206 | + ), |
| 207 | + ( |
| 208 | + { |
| 209 | + 0: torch.export.Dim("batch_size"), |
| 210 | + 2: torch.export.Dim("past_sequence_length"), |
| 211 | + }, |
| 212 | + { |
| 213 | + 0: torch.export.Dim("batch_size"), |
| 214 | + 2: torch.export.Dim("past_sequence_length"), |
| 215 | + }, |
| 216 | + ), |
| 217 | + ], |
| 218 | + ], |
| 219 | + ) |
| 220 | + ], |
| 221 | + ) |
| 222 | + def test__from_dynamic_axes_to_dynamic_shapes_succeeds_on_llm( |
| 223 | + self, |
| 224 | + model, |
| 225 | + args, |
| 226 | + kwargs, |
| 227 | + input_names, |
| 228 | + output_names, |
| 229 | + dynamic_axes, |
| 230 | + expected_dynamic_shapes, |
| 231 | + ): |
| 232 | + dynamic_shapes = _compat._from_dynamic_axes_to_dynamic_shapes( |
| 233 | + model, |
| 234 | + args, |
| 235 | + kwargs, |
| 236 | + input_names=input_names, |
| 237 | + output_names=output_names, |
| 238 | + dynamic_axes=dynamic_axes, |
| 239 | + ) |
| 240 | + |
| 241 | + # NOTE: torch.export.Dim being an object makes it impossible to compare the objects directly. |
| 242 | + # And it's unrealistic to test whole model, so we are testing the structure of the dynamic_shapes. |
| 243 | + _, tree1 = _pytree.tree_flatten(dynamic_shapes) |
| 244 | + _, tree2 = _pytree.tree_flatten(expected_dynamic_shapes) |
| 245 | + self.assertEqual(tree1, tree2) |
| 246 | + |
| 247 | + |
| 248 | +if __name__ == "__main__": |
| 249 | + common_utils.run_tests() |
0 commit comments