-
Notifications
You must be signed in to change notification settings - Fork 308
/
Copy pathtrainer.py
149 lines (119 loc) · 4.74 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# -*- coding: utf-8 -*-
import argparse
import inspect
import json
import os
import sys
from logging import INFO, basicConfig, getLogger
import wandb
from bugbug import db
from bugbug.models import MODELS, get_model_class
from bugbug.utils import CustomJsonEncoder, create_tar_zst, zstd_compress
basicConfig(level=INFO)
logger = getLogger(__name__)
class Trainer(object):
def go(self, args):
# Download datasets that were built by bugbug_data.
os.makedirs("data", exist_ok=True)
model_name = args.model
model_class = get_model_class(model_name)
parameter_names = set(inspect.signature(model_class.__init__).parameters)
parameters = {
key: value for key, value in vars(args).items() if key in parameter_names
}
model_obj = model_class(**parameters)
if args.download_db:
for required_db in model_obj.training_dbs:
assert db.download(required_db)
if args.download_eval:
model_obj.download_eval_dbs()
else:
logger.info("Skipping download of the databases")
logger.info("Training *%s* model", model_name)
metrics, wandb_run = model_obj.train(limit=args.limit)
# Save the metrics as a file that can be uploaded as an artifact.
metric_file_path = "metrics.json"
with open(metric_file_path, "w") as metric_file:
json.dump(metrics, metric_file, cls=CustomJsonEncoder)
artifact = wandb.Artifact(name="metrics_file", type="data")
artifact.add_file("metrics.json")
wandb_run.log_artifact(artifact)
logger.info("Training done")
model_directory = f"{model_name}model"
assert os.path.exists(model_directory)
create_tar_zst(f"{model_directory}.tar.zst")
logger.info("Model compressed")
if model_obj.store_dataset:
assert os.path.exists(f"{model_name}model_data_X")
zstd_compress(f"{model_name}model_data_X")
assert os.path.exists(f"{model_name}model_data_y")
zstd_compress(f"{model_name}model_data_y")
def parse_args(args):
description = "Train the models"
main_parser = argparse.ArgumentParser(description=description)
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
"--limit",
type=int,
help="Only train on a subset of the data, used mainly for integrations tests",
)
parser.add_argument(
"--no-download",
action="store_false",
dest="download_db",
help="Do not download databases, uses whatever is on disk",
)
parser.add_argument(
"--download-eval",
action="store_true",
dest="download_eval",
help="Download databases and database support files required at runtime (e.g. if the model performs custom evaluations)",
)
parser.add_argument(
"--lemmatization",
help="Perform lemmatization (using spaCy)",
action="store_true",
)
subparsers = main_parser.add_subparsers(title="model", dest="model", required=True)
for model_name in MODELS:
subparser = subparsers.add_parser(
model_name, parents=[parser], help=f"Train {model_name} model"
)
try:
model_class_init = get_model_class(model_name).__init__
except ImportError:
continue
for parameter in inspect.signature(model_class_init).parameters.values():
if parameter.name == "self":
continue
# Skip parameters handled by the base class (TODO: add them to the common argparser and skip them automatically without hardcoding by inspecting the base class)
if parameter.name == "lemmatization":
continue
parameter_type = parameter.annotation
if parameter_type == inspect._empty:
parameter_type = type(parameter.default)
assert parameter_type is not None
if parameter_type == bool:
subparser.add_argument(
f"--{parameter.name}"
if parameter.default is False
else f"--no-{parameter.name}",
action="store_true"
if parameter.default is False
else "store_false",
dest=parameter.name,
)
else:
subparser.add_argument(
f"--{parameter.name}",
default=parameter.default,
dest=parameter.name,
type=int,
)
return main_parser.parse_args(args)
def main():
args = parse_args(sys.argv[1:])
retriever = Trainer()
retriever.go(args)
if __name__ == "__main__":
main()