diff --git a/multivariable-calculus/manipulating-derivatives.md b/multivariable-calculus/manipulating-derivatives.md index 9758b447..f9fa4423 100644 --- a/multivariable-calculus/manipulating-derivatives.md +++ b/multivariable-calculus/manipulating-derivatives.md @@ -1 +1,74 @@ -# Manipulating partial derivatives +# Manipulating Partial Derivatives + +We sometimes need to find derivatives we don't obtain easily from one of these potentials. For this, we use some calculus rules. + +--- + +#### Inversion + +If x(y, z) and y(x, z), then: + +```{math} +\left( \frac{\partial x}{\partial y} \right)_z = \frac{1}{\left( \frac{\partial y}{\partial x} \right)_z} +``` + +**Example:** + +```{math} +Let: +x = \frac{y^2}{z} +``` + +We can rearrange this to: +```{math} +y = \pm \sqrt{xz} +``` + +Now compute: +```{math} +\left( \frac{\partial x}{\partial y} \right)_z = \frac{2y}{z} +``` + +Then: +```{math} +\left( \frac{\partial y}{\partial x} \right)_z = \frac{z}{2y} +``` + +And confirm the inversion: +```{math} +\frac{1}{\left( \frac{\partial y}{\partial x} \right)_z} = \frac{2y}{z} +``` + +#### Chain Rule + +```{math} +\left( \frac{\partial x}{\partial y} \right)_z = \left( \frac{\partial x}{\partial w} \right)_z \left( \frac{\partial w}{\partial y} \right)_z +``` +**Example:** + +```{math} + w = yz +``` + So, + ```{math} + y = \frac{w}{z} + ``` +Then: +```{math} +x = \frac{(w/z)^2}{z} = \frac{w^2}{z^3} +``` + +Now compute: +```{math} +\left( \frac{\partial x}{\partial w} \right)_z = \frac{2w}{z^3} +``` + +And: +```{math} +\left( \frac{\partial w}{\partial y} \right)_z = z +``` + +Therefore: +```{math} +\left( \frac{\partial x}{\partial y} \right)_z = \frac{2w}{z^3} \cdot z = \frac{2w}{z^2} = \frac{2yz}{z^2} = \frac{2y}{z} +```