Matplotlib provides mechanisms for updating elements (artists) in figures. However, the APIs for these artists are not consistent and some are under- or undocumented. Furthermore, the creation and positioning of the native Matplotlib widgets is nontrivial. While the `ipywidgets` [@interactive_Jupyter_widgets] library makes widget creation and positioning easier, it is difficult to integrate with Matplotlib in a performant manner. The easiest way to do so is to use the `ipywidgets`' `interact()` function, which automatically generates sliders and other widgets to control arguments to arbitrary python functions. However, this can result in completely regenerating the figure which can be slow. Alternatively, the user needs to remember the specifics of how to update each individual artist. While `matplotlib` and `ipywidgets` provide the tools for controlling plots with widgets, the overhead of implementing such control can overwhelm its utility. `mpl-interactions` fills this gap by making it easy for users to generate widgets that dynamically control plots.
0 commit comments