-
-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathex05_sequence_classification_GRU.nim
196 lines (163 loc) · 6.27 KB
/
ex05_sequence_classification_GRU.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Classify a sequence of number if increasing, decreasing or non-monotonic
import
../src/arraymancer,
random, sequtils, strformat
# Make the results reproducible by initializing a random seed
randomize(42)
type SeqKind = enum
Increasing, Decreasing, NonMonotonic
const DataSize = 30000
func classify(input: Tensor[float32], id: int): SeqKind =
if input[id, 0] < input[id, 1] and input[id, 1] < input[id, 2]:
result = Increasing
elif input[id, 0] > input[id, 1] and input[id, 1] > input[id, 2]:
result = Decreasing
else:
result = NonMonotonic
proc gen3(): array[3, float32] =
# Generate monotonic sequence with more than 25% probability
# Note that if NonMonotonic is drawn, it's just plain random
let kind = sample([Increasing, Decreasing, NonMonotonic, NonMonotonic])
result[0] = rand(1.0)
for i in 1..2:
case kind
of Increasing:
result[i] = rand(result[i-1]..1'f32)
of Decreasing:
result[i] = rand(0'f32..result[i-1])
else:
result[i] = rand(0'f32 .. 1'f32)
var dataset_X = toTensor newSeqWith(DataSize, gen3())
var dataset_y = newTensor[SeqKind](DataSize)
for i in 0 ..< DataSize:
dataset_y[i] = classify(dataset_X, i)
echo "Example dataset"
echo dataset_X[0 ..< 10, _]
echo "Corresponding labels"
echo dataset_y[0 ..< 10]
echo "\n"
# How many neurons do we need to change a light bulb, sorry compare 3 numbers? let's pick ...
const
HiddenSize = 256
BatchSize = 512
Epochs = 8
Layers = 4
# Let's setup our neural network context, variables and model
let
ctx = newContext Tensor[float32]
# GRU needs this shape[sequence, batch, features]
X = ctx.variable dataset_X.transpose.unsqueeze(2)
y = dataset_y.asType(int)
# Check our shape
doAssert X.value.shape == [3, DataSize, 1]
network TheGreatSequencer:
layers:
gru1: GRULayer(1, HiddenSize, 4) # (num_input_features, hidden_size, stacked_layers)
fc1: Linear(HiddenSize, 32) # 1 classifier per GRU layer
fc2: Linear(HiddenSize, 32)
fc3: Linear(HiddenSize, 32)
fc4: Linear(HiddenSize, 32)
classifier: Linear(32 * 4, 3) # Stacking a classifier which learns from the other 4
forward x, hidden0:
let
(output, hiddenN) = gru1(x, hidden0)
clf1 = hiddenN[0, _, _].squeeze(0).fc1.relu
clf2 = hiddenN[1, _, _].squeeze(0).fc2.relu
clf3 = hiddenN[2, _, _].squeeze(0).fc3.relu
clf4 = hiddenN[3, _, _].squeeze(0).fc4.relu
# Concat all
# Since concat backprop is not implemented we cheat by stacking
# Then flatten
result = stack(clf1, clf2, clf3, clf4, axis = 2)
result = classifier(result.flatten)
# Allocate the model
let model = ctx.init(TheGreatSequencer)
var optim = model.optimizer(Adam, 0.01'f32)
# And let's start training the network
for epoch in 0 ..< Epochs:
for start_batch in countup(0, DataSize-1, BatchSize):
# Deal with last batch being smaller
let end_batch = min(X.value.shape[1]-1, start_batch + BatchSize)
let X_batch = X[_, start_batch ..< end_batch, _]
let target = y[start_batch ..< end_batch]
let this_batch_size = end_batch - start_batch
# Go through the model
let hidden0 = ctx.variable zeros[float32](Layers, this_batch_size, HiddenSize)
let clf = model.forward(X_batch, hidden0)
# Go through our cost function
let loss = clf.sparse_softmax_cross_entropy(target)
# Backpropagate the errors and let the optimizer fix them.
loss.backprop()
optim.update()
# Let's see how we fare:
ctx.no_grad_mode:
let hidden0 = ctx.variable zeros[float32](Layers, DataSize, HiddenSize)
let y_pred = model
.forward(X, hidden0)
.value
.softmax
.argmax(axis = 1)
.squeeze
let score = y_pred.accuracy_score(y)
echo &"Epoch #{epoch:> 04}. Accuracy: {score*100:00.3f}%"
###################
# Output
# Example dataset
# Tensor[system.float32] of shape [10, 3] of type "float32" on backend "Cpu"
# |0.08715851604938507 0.6252052187919617 0.8734603524208069|
# |0.4635309278964996 0.1152218133211136 0.6088221073150635|
# |0.4754987359046936 0.7151913642883301 0.7708750367164612|
# |0.3764243125915527 0.3795507848262787 0.9351327419281006|
# |0.6993147730827332 0.733343780040741 0.8100541830062866|
# |0.4297148883342743 0.09527183324098587 0.01486776024103165|
# |0.875207245349884 0.2490521669387817 0.1578131020069122|
# |0.02143412455916405 0.0222312156111002 0.7928663492202759|
# |0.07909850776195526 0.1905942112207413 0.4293616414070129|
# |0.04384680092334747 0.7198637723922729 0.2911368310451508|
# Corresponding labels
# Tensor[ex05_sequence_classification_GRU.SeqKind] of shape [10] of type "SeqKind" on backend "Cpu"
# Increasing NonMonotonic Increasing Increasing Increasing Decreasing Decreasing Increasing Increasing NonMonotonic
# Epoch # 000. Accuracy: 95.163%
# Epoch # 001. Accuracy: 97.377%
# Epoch # 002. Accuracy: 97.740%
# Epoch # 003. Accuracy: 96.940%
# Epoch # 004. Accuracy: 97.380%
# Epoch # 005. Accuracy: 98.010%
# Epoch # 006. Accuracy: 98.700%
# Epoch # 007. Accuracy: 98.370%
###################
## Let's give our model some handcrafted tests
block:
let exam = ctx.variable([
[float32 0.10, 0.20, 0.30], # increasing
[float32 0.10, 0.90, 0.95], # increasing
[float32 0.45, 0.50, 0.55], # increasing
[float32 0.10, 0.30, 0.20], # non-monotonic
[float32 0.20, 0.10, 0.30], # non-monotonic
[float32 0.98, 0.97, 0.96], # decreasing
[float32 0.12, 0.05, 0.01], # decreasing
[float32 0.95, 0.05, 0.07] # non-monotonic
].toTensor.transpose.unsqueeze(2))
let hidden0 = ctx.variable zeros[float32](Layers, 8, HiddenSize)
let answer = model
.forward(exam, hidden0)
.value
.softmax
.argmax(axis = 1)
.squeeze
.asType(SeqKind)
echo "\nTesting the model with:"
echo exam.value.squeeze(2).transpose()
echo "Answers:"
echo answer.unsqueeze(1)
# Tensor[ex05_sequence_classification_GRU.SeqKind] of shape [8, 1] of type "SeqKind" on backend "Cpu"
# Increasing|
# Increasing|
# Increasing|
# NonMonotonic|
# NonMonotonic|
# Increasing| <----- Wrong!
# Decreasing|
# NonMonotonic|
# Almost there!
# Next step: financial markets, let's collar those bears.