-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
136 lines (103 loc) · 4.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image
import argparse
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
from io import BytesIO
def get_webcam_image(url, image_alt_text):
# Send a GET request to the URL
response = requests.get(url)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Parse the HTML content of the page
soup = BeautifulSoup(response.text, 'html.parser')
# Find the image tag with the specified alt text
img_tags = soup.find_all('img', alt=image_alt_text)
# Check if the image tag was found
if len(img_tags)>0:
# the first few results are a small icon of a webcam, a fake
# only get the last one
img_tag = img_tags[-1]
# Get the source (src) attribute of the image tag
img_src = img_tag.get('src')
# Join the image URL with the base URL of the page to get the absolute URL
absolute_img_url = urljoin(url, img_src)
# Download the image
img_response = requests.get(absolute_img_url)
# Check if the image download was successful
if img_response.status_code == 200:
# Save the image to a file
return img_response.content
return Image.open(BytesIO(img_response.content))
# with open('downloaded_image.jpg', 'wb') as img_file:
# img_file.write(img_response.content)
# print(f"Image downloaded successfully: {absolute_img_url}")
else:
print(f"Failed to download image. Status code: {img_response.status_code}")
else:
print(f"Image with alt text '{image_alt_text}' not found on the page.")
else:
print(f"Failed to fetch URL. Status code: {response.status_code}")
return None
def get_image(filename):
return Image.open(filename)
def crop_image(image, crop_rect):
left, top, right, bottom = (int(x) for x in crop_rect.split(','))
return image.crop((left, top, right, bottom))
def apply_mask(image, mask_filename):
image_to_apply_mask = image.copy()
mask = Image.open(mask_filename)
image_to_apply_mask.paste(mask, (0, 0), mask)
return image_to_apply_mask
def resize_image(image, scaleup):
width, height = image.size
scaleup_int = int(scaleup)
return image.resize((width * scaleup_int, height * scaleup_int))
def apply_image_corrections(image_as_array):
grey = cv2.cvtColor(image_as_array, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(grey, (5, 5), 0)
dilated = cv2.dilate(blur, np.ones((3, 3)))
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
closing = cv2.morphologyEx(dilated, cv2.MORPH_CLOSE, kernel)
return closing
def detect_cars(original_image, corrected_image, detection_xml, is_apply_corrections):
original_image_arr = np.array(original_image)
corrected_image_arr = np.array(corrected_image)
if int(is_apply_corrections):
corrected_image_arr = apply_image_corrections(corrected_image_arr)
car_cascade = cv2.CascadeClassifier(detection_xml)
cars = car_cascade.detectMultiScale(corrected_image_arr, 1.1, 1)
car_count = 0
for (x, y, w, h) in cars:
cv2.rectangle(original_image_arr, (x, y), (x + w, y + h), (255, 0, 0), 5)
car_count += 1
print(car_count, "cars found")
return car_count, original_image_arr
def main():
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("-f", "--file", help="path to image to use", default="__none")
arg_parser.add_argument("-c", "--croprect", help="left,top,right,bottom", default="195,450,850,1080")
arg_parser.add_argument("-m", "--mask", help="path to mask file", required=True)
arg_parser.add_argument("-u", "--scaleup", help="scale of original picture magnify", default=1)
arg_parser.add_argument("-a", "--apply-corrections", help="1/0 to apply corrections to original image", default=1)
arg_parser.add_argument("-d", "--detection", help="path to detection XML", required=True)
args = arg_parser.parse_args()
if args.file == "__none":
image_content = get_webcam_image("https://www.masarycka.com/cs/online-kamera/", "Online kamera")
if image_content is None:
return
image = Image.open(BytesIO(image_content))
else:
image = get_image(args.file)
cropped_image = crop_image(image, args.croprect)
masked_image = apply_mask(cropped_image, args.mask)
resized_image = resize_image(masked_image, args.scaleup)
original_resized_image = resize_image(cropped_image, args.scaleup)
car_count, detection_img = detect_cars(original_resized_image, resized_image, args.detection, args.apply_corrections)
plt.imshow(detection_img, interpolation='nearest')
plt.show()
if __name__ == '__main__':
main()