forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLinearAlgebra.cpp
201 lines (163 loc) · 8.2 KB
/
LinearAlgebra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Config.h>
#if !AT_MKL_ENABLED()
namespace at { namespace native {
Tensor& _baddbmm_mkl_(Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha) {
AT_ERROR("bmm: ATen not compiled with MKL support");
}
}}
#else // AT_MKL_ENABLED
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <ATen/Dispatch.h>
#include <ATen/Utils.h>
#include <ATen/NativeFunctions.h>
#include <algorithm>
#include <vector>
#include <numeric>
#include <cmath>
#include <mkl.h>
#include <ATen/mkl/Exceptions.h>
#include <ATen/mkl/Descriptors.h>
#include <ATen/mkl/Limits.h>
namespace at { namespace native {
static inline void gemm(const CBLAS_TRANSPOSE trans_A, const CBLAS_TRANSPOSE trans_B,
const int M, const int N, const int K, const float alpha, const float* A,
const int lda, const float* B, const int ldb, const float beta, float* C, const int ldc) {
cblas_sgemm(CblasRowMajor, trans_A, trans_B, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);
}
static inline void gemm(const CBLAS_TRANSPOSE trans_A, const CBLAS_TRANSPOSE trans_B,
const int M, const int N, const int K, const double alpha, const double* A,
const int lda, const double* B, const int ldb, const double beta, double* C, const int ldc) {
cblas_dgemm(CblasRowMajor, trans_A, trans_B, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);
}
static inline void gemm(const CBLAS_TRANSPOSE trans_A, const CBLAS_TRANSPOSE trans_B,
const int M, const int N, const int K, const c10::complex<float> alpha,
const c10::complex<float>* A, const int lda, const c10::complex<float>* B, const int ldb,
const c10::complex<float> beta, c10::complex<float>* C, const int ldc) {
cblas_cgemm(CblasRowMajor, trans_A, trans_B, M, N, K, reinterpret_cast<const void *>(&alpha),
reinterpret_cast<const void*>(A), lda, reinterpret_cast<const void*>(B), ldb,
reinterpret_cast<const void*>(&beta), reinterpret_cast<void*>(C), ldc);
}
static inline void gemm(const CBLAS_TRANSPOSE trans_A, const CBLAS_TRANSPOSE trans_B,
const int M, const int N, const int K, const c10::complex<double> alpha,
const c10::complex<double>* A, const int lda, const c10::complex<double>* B, const int ldb,
const c10::complex<double> beta, c10::complex<double>* C, const int ldc) {
cblas_zgemm(CblasRowMajor, trans_A, trans_B, M, N, K, reinterpret_cast<const void *>(&alpha),
reinterpret_cast<const void*>(A), lda, reinterpret_cast<const void*>(B), ldb,
reinterpret_cast<const void*>(&beta), reinterpret_cast<void*>(C), ldc);
}
static inline void gemm_batched(const CBLAS_TRANSPOSE trans_A, const CBLAS_TRANSPOSE trans_B,
const int batch_size, const int M, const int N, const int K, const float alpha,
const float** A, const int lda, const float** B, const int ldb, const float beta,
float** C, const int ldc) {
cblas_sgemm_batch(CblasRowMajor, &trans_A, &trans_B, &M, &N, &K, &alpha,
A, &lda, B, &ldb, &beta, C, &ldc, 1, &batch_size);
}
static inline void gemm_batched(const CBLAS_TRANSPOSE trans_A, const CBLAS_TRANSPOSE trans_B,
const int batch_size, const int M, const int N, const int K, const double alpha,
const double** A, const int lda, const double** B, const int ldb, const double beta,
double** C, const int ldc) {
cblas_dgemm_batch(CblasRowMajor, &trans_A, &trans_B, &M, &N, &K, &alpha,
A, &lda, B, &ldb, &beta, C, &ldc, 1, &batch_size);
}
static inline void gemm_batched(const CBLAS_TRANSPOSE trans_A, const CBLAS_TRANSPOSE trans_B,
const int batch_size, const int M, const int N, const int K, const c10::complex<float> alpha,
const c10::complex<float>** A, const int lda, const c10::complex<float>** B, const int ldb,
const c10::complex<float> beta, c10::complex<float>** C, const int ldc) {
cblas_cgemm_batch(CblasRowMajor, &trans_A, &trans_B, &M, &N, &K, reinterpret_cast<const void*>(&alpha),
reinterpret_cast<const void**>(A), &lda, reinterpret_cast<const void**>(B), &ldb,
reinterpret_cast<const void*>(&beta), reinterpret_cast<void**>(C), &ldc, 1, &batch_size);
}
static inline void gemm_batched(const CBLAS_TRANSPOSE trans_A, const CBLAS_TRANSPOSE trans_B,
const int batch_size, const int M, const int N, const int K, const c10::complex<double> alpha,
const c10::complex<double>** A, const int lda, const c10::complex<double>** B, const int ldb,
const c10::complex<double> beta, c10::complex<double>** C, const int ldc) {
cblas_zgemm_batch(CblasRowMajor, &trans_A, &trans_B, &M, &N, &K, reinterpret_cast<const void*>(&alpha),
reinterpret_cast<const void**>(A), &lda, reinterpret_cast<const void**>(B), &ldb,
reinterpret_cast<const void*>(&beta), reinterpret_cast<void**>(C), &ldc, 1, &batch_size);
}
template <typename scalar_t>
static inline void baddbmm_mkl_template(const Tensor& res, const Tensor& mat1, const Tensor& mat2, const Scalar& beta_, const Scalar& alpha_) {
const auto mat1_strides = mat1.strides();
const auto mat2_strides = mat2.strides();
const auto mat1_sizes = mat1.sizes();
const auto mat2_sizes = mat2.sizes();
auto is_transposed = [](const c10::IntArrayRef& strides, const c10::IntArrayRef& sizes) {
return strides[1] == 1 && strides[2] >= sizes[1];
};
const CBLAS_TRANSPOSE trans_A =
is_transposed(mat1_strides, mat1_sizes) ? CblasTrans : CblasNoTrans;
const CBLAS_TRANSPOSE trans_B =
is_transposed(mat2_strides, mat2_sizes) ? CblasTrans : CblasNoTrans;
// mat1: batch_size * M * K
const int batch_size = mat1_sizes[0];
const int M = mat1_sizes[1];
// mat2: batch_size * K * N
const int N = mat2_sizes[2];
const int K = mat1_sizes[2];
scalar_t alpha = alpha_.to<scalar_t>();
scalar_t beta = beta_.to<scalar_t>();
const int lda = trans_A == CblasTrans ? mat1_strides[2] : mat1_strides[1];
const int ldb = trans_B == CblasTrans ? mat2_strides[2] : mat2_strides[1];
const int ldc = res.strides()[1];
// avoid using tensor accessor in the case of mat1/mat2 not being transposed
// or only transposed in the last two axes
const bool canAvoidTensorAccessor = mat1_strides[0] == mat1_sizes[1] * mat1_sizes[2] &&
mat2_strides[0] == mat2_sizes[1] * mat2_sizes[2];
scalar_t* const res_data = res.data_ptr<scalar_t>();
if (batch_size == 1) {
const scalar_t* A;
const scalar_t* B;
if (canAvoidTensorAccessor) {
scalar_t* mat1_data = mat1.data_ptr<scalar_t>();
scalar_t* mat2_data = mat2.data_ptr<scalar_t>();
A = mat1_data;
B = mat2_data;
} else {
auto mat1_acc = mat1.accessor<scalar_t, 3>();
auto mat2_acc = mat2.accessor<scalar_t, 3>();
A = mat1_acc[0].data();
B = mat2_acc[0].data();
}
gemm(trans_A, trans_B, M, N, K, alpha, A, lda, B, ldb, beta, res_data, ldc);
return;
}
std::vector<const scalar_t*> A;
A.reserve(batch_size);
std::vector<const scalar_t*> B;
B.reserve(batch_size);
std::vector<scalar_t*> C;
C.reserve(batch_size);
// avoid using tensor accessor in the case of mat1/mat2 not being transposed
// or only transposed in the last two axis
const auto res_sizes = res.sizes();
if (canAvoidTensorAccessor) {
scalar_t* mat1_data = mat1.data_ptr<scalar_t>();
scalar_t* mat2_data = mat2.data_ptr<scalar_t>();
for (int64_t batch = 0; batch < batch_size; batch++) {
A.emplace_back(mat1_data + batch * mat1_sizes[1] * mat1_sizes[2]);
B.emplace_back(mat2_data + batch * mat2_sizes[1] * mat2_sizes[2]);
C.emplace_back(res_data + batch * res_sizes[1] * res_sizes[2]);
}
} else {
auto mat1_acc = mat1.accessor<scalar_t, 3>();
auto mat2_acc = mat2.accessor<scalar_t, 3>();
for (int64_t batch = 0; batch < batch_size; batch++) {
A.emplace_back(mat1_acc[batch].data());
B.emplace_back(mat2_acc[batch].data());
C.emplace_back(res_data + batch * res_sizes[1] * res_sizes[2]);
}
}
gemm_batched(trans_A, trans_B, batch_size, M, N, K, alpha, A.data(), lda, B.data(), ldb, beta, C.data(), ldc);
}
Tensor& _baddbmm_mkl_(Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha) {
// checks are done in native/LinearAlgebra.cpp
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(self.scalar_type(), "baddbmm__mkl", [&] {
baddbmm_mkl_template<scalar_t>(self, batch1, batch2, beta, alpha);
});
return self;
}
}} // namespace at::native
#endif