Skip to content

Commit e862fe4

Browse files
committed
add meta ale map
1 parent 818dcba commit e862fe4

File tree

5 files changed

+255
-0
lines changed

5 files changed

+255
-0
lines changed
Lines changed: 255 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,255 @@
1+
2+
# Brain map of exercise effects
3+
4+
This notebook documents the generation of a brain map describing where there have been observations of relations between physical activity and fitness with brain structure or function. We use [GingerALE](http://brainmap.org/ale/manual.pdf) to generate the brain map.
5+
6+
7+
8+
### Coding effects
9+
10+
Code functional connectivity effects for DMN related seeds, from the following papers:
11+
* Voss, M., Erickson, K., Prakash, R., Chaddock, L., Malkowski, E., Alves, H., Kim, J., Morris, K., White, S., Wójcicki, T., Hu, L., Szabo, A., Klamm, E., McAuley, E., Kramer, A., 2010. Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia 48(5), 1394-1406.
12+
* cross-sectional fc with CRF from HALT trial baseline
13+
* Voss, M., Prakash, R., Erickson, K., Basak, C., Chaddock, L., Kim, J., Alves, H., Heo, S., Szabo, A., White, S., Wojcicki, T., Mailey, E., Gothe, N., Olson, E., McAuley, E., Kramer, A., 2010. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci 2.
14+
* RCT, intervention effects from HALT
15+
* code only DMN seeds where there was an effect at 12mo
16+
* Boraxbekk, C.J., Salami, A., Wahlin, A., Nyberg, L., 2016. Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network-A multimodal approach. Neuroimage 131, 133-141.
17+
* prospective, current and accumulated PA based on composite of self-report and proxy measures of physical health like BMI
18+
* Voss, M., Weng, T., Burzynska, A., Wong, C., Cooke, G., Clark, R., Fanning, J., Awick, E., Gothe, N., Olson, E., McAuley, E., Kramer, A., 2016. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. NeuroImage 131, 113-125.
19+
* cross-sectional fc with CRF from FAST trial baseline
20+
* Chirles, T.J., Reiter, K., Weiss, L.R., Alfini, A.J., Nielson, K.A., Smith, J.C., 2017. Exercise Training and Functional Connectivity Changes in Mild Cognitive Impairment and Healthy Elders. J Alzheimers Dis 57(3), 845-856.
21+
* small training study with MCI participants
22+
* only coded effects for time * group
23+
* Flodin, P., Jonasson, L.S., Riklund, K., Nyberg, L., Boraxbekk, C.J., 2017. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults. Front Aging Neurosci 9, 267.
24+
* training study with healthy older adults
25+
* caveat: may have used entire anatomical hippocampus ROI for functional seed
26+
* Stillman, C.M., Uyar, F., Huang, H.Q., Grove, G.A., Watt, J.C., Wollam, M.E., Erickson, K.I., 2018. Cardiorespiratory fitness is associated with enhanced hippocampal functional connectivity in healthy young adults. Hippocampus 28(3), 239-247.
27+
* cross-sectional with healthy young adults
28+
* caveat: anatomical ROIs for anterior and posterior hipp seeds
29+
30+
Not included
31+
* Burdette 2010
32+
* no coordinates
33+
34+
35+
```python
36+
%%bash
37+
38+
# Can list multiple coordinates for a given study
39+
40+
echo "
41+
//Reference=MNI
42+
//Voss,2010a
43+
//Subjects=120
44+
-28 18 48
45+
-4 50 -4
46+
62 -12 -18
47+
-56 -14 -16
48+
-16 -58 30
49+
30 -24 -14
50+
-24 -40 -18
51+
52+
53+
//Voss,2010b
54+
//Subjects=75
55+
-24 -26 -20
56+
24 -26 -20
57+
-52 -18 -18
58+
58 -10 -18
59+
-44 -72 34
60+
54 -62 32
61+
-30 20 50
62+
63+
64+
//Boraxbekk,2015
65+
//Subjects=308
66+
-8 -32 26
67+
68+
69+
//Boraxbekk,2015
70+
//Subjects=196
71+
-6 -32 26
72+
73+
74+
//Voss,2016
75+
//Subjects=189
76+
-24 24 42
77+
-6 62 -4
78+
22 28 44
79+
-6 -54 32
80+
6 -60 32
81+
6 62 -4
82+
62 -10 -16
83+
50 -62 34
84+
-24 -26 -20
85+
-52 -18 -18
86+
87+
//Chirles,2017
88+
//Subjects=32
89+
-2 -50 36
90+
48 -70 38
91+
92+
93+
//Flodin,2017
94+
//Subjects=60
95+
14 2 58
96+
-22 -6 56
97+
28 -62 58
98+
22 48 32
99+
36 -48 30
100+
-48 14 6
101+
-32 30 -8
102+
103+
104+
//Stillman,2018
105+
//Subjects=50
106+
-16 -30 -20
107+
-10 68 -4
108+
26 46 -22
109+
66 -46 -16
110+
-34 -26 -30
111+
8 -60 38
112+
-30 42 -20
113+
-2 60 14" > foci_fc.txt
114+
```
115+
116+
117+
```python
118+
%%bash
119+
120+
cat foci_fc.txt
121+
```
122+
123+
124+
```python
125+
%%bash
126+
127+
# should be 1.8
128+
# java -version
129+
```
130+
131+
## Meta-analyzing with GingerALE
132+
133+
* The command line seems to hang on me, so I used the GUI
134+
* Run GUI by double-clicking on GingerALE.jar application
135+
* Threshold at p<.001 because there are very few studies and we're most interested in any consistency in spatial pattern, so we want to see the most possible hits across studies. We will then overlay this summary image on the DMN to evaluate whether the hits are falling within the DMN or not.
136+
137+
## Prep in relation to DMN
138+
139+
Output
140+
* foci_fc_ALE_p001.nii
141+
* MNI-152 space
142+
* LPI orientation
143+
* Our maps from the Schaefer/Yeo parcellation and any other maps we have are in RPI orientation. So to view together in nilearn, we'll reorient the ALE output to LPI.
144+
145+
146+
```python
147+
%%bash
148+
149+
# swap on x dimension to flip from LPI to RPI
150+
fslswapdim foci_fc_ALE_p001.nii -x y z foci_fc_ALE_p001_RPI
151+
152+
# ensure header consistent too
153+
fslorient -swaporient foci_fc_ALE_p001_RPI.nii.gz
154+
155+
# the DMN map is made from summing all parcels labeled DMN in the Schaefer 400 parcellation
156+
# e.g., for roi in $(find ${PWD} -maxdepth 1 -type f -name "*Default*"| grep -v ".txt"); do echo -add ${roi} \\; done
157+
# use output with an fslmaths command to add them and bin
158+
# fslmaths 17Networks_Default.nii.gz -bin 17Networks_Default_bin.nii.gz
159+
160+
# resample ALE image into MNI152 space of DMN map
161+
flirt -in 17Networks_Default_bin.nii.gz -ref foci_fc_ALE_p001_RPI.nii.gz -out 17Networks_Default_bin_resample.nii.gz
162+
fslmaths 17Networks_Default_bin_resample.nii.gz -bin 17Networks_Default_resample_bin.nii.gz
163+
164+
# scale down map so clusters are highly distinct in gradient when added in
165+
fslmaths 17Networks_Default_resample_bin.nii.gz -div 100000000000 17Networks_Default_resample_bin_scaled.nii.gz
166+
167+
# add the ALE image to the DMN binarized map for easy viewing on the surface together
168+
fslmaths 17Networks_Default_resample_bin_scaled.nii.gz -add foci_fc_ALE_p001_RPI.nii.gz foci_fc_ALE_p001_RPI_underlay-DMN.nii.gz
169+
```
170+
171+
## Viewing results
172+
173+
Plot onto a surface image using nilearn, since DMN is primarily cortical.
174+
175+
176+
```python
177+
# load python packages for plotting results
178+
179+
from nilearn import plotting
180+
from nilearn import image
181+
%matplotlib inline
182+
```
183+
184+
185+
```python
186+
# plot on fsaverage surface
187+
from nilearn import datasets
188+
from nilearn import surface
189+
fsaverage = datasets.fetch_surf_fsaverage5()
190+
191+
# set the img as your 3D volume to plot
192+
ale_img='foci_fc_ALE_p001_RPI_underlay-DMN.nii.gz'
193+
194+
# transform volume to a surface image
195+
# usage: http://nilearn.github.io/modules/generated/nilearn.surface.vol_to_surf.html
196+
texture_left = surface.vol_to_surf(ale_img, fsaverage.pial_left)
197+
texture_right = surface.vol_to_surf(ale_img, fsaverage.pial_right)
198+
199+
# plots
200+
# usage: http://nilearn.github.io/modules/generated/nilearn.plotting.plot_surf_stat_map.html
201+
202+
```
203+
204+
205+
```python
206+
# left medial
207+
display=plotting.plot_surf_stat_map(fsaverage.infl_left, texture_left, hemi='left', view='medial',
208+
title='Surface left hemisphere',
209+
threshold=None, bg_map=fsaverage.sulc_left,
210+
cmap='Reds_r')
211+
212+
```
213+
214+
215+
![png](output_12_0.png)
216+
217+
218+
219+
```python
220+
# right medial
221+
display=plotting.plot_surf_stat_map(fsaverage.infl_right, texture_right, hemi='right',view='medial',
222+
title='Surface right hemisphere',
223+
threshold=None, bg_map=fsaverage.sulc_right,
224+
cmap='Reds_r')
225+
```
226+
227+
228+
![png](output_13_0.png)
229+
230+
231+
232+
```python
233+
# left lateral
234+
display=plotting.plot_surf_stat_map(fsaverage.infl_left, texture_left, hemi='left',view='lateral',
235+
title='Surface left hemisphere',
236+
threshold=None, bg_map=fsaverage.sulc_left,
237+
cmap='Reds_r')
238+
```
239+
240+
241+
![png](output_14_0.png)
242+
243+
244+
245+
```python
246+
# right lateral
247+
display=plotting.plot_surf_stat_map(fsaverage.infl_right, texture_right, hemi='right',view='lateral',
248+
title='Surface right hemisphere',
249+
threshold=None, bg_map=fsaverage.sulc_right,
250+
cmap='Reds_r')
251+
```
252+
253+
254+
![png](output_15_0.png)
255+

ExerciseBrainMap/output_12_0.png

19 KB
Loading

ExerciseBrainMap/output_13_0.png

18.7 KB
Loading

ExerciseBrainMap/output_14_0.png

23.2 KB
Loading

ExerciseBrainMap/output_15_0.png

24.9 KB
Loading

0 commit comments

Comments
 (0)