-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtextClassfierModel.py
181 lines (132 loc) · 6.22 KB
/
textClassfierModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
# coding: utf-8
# In[9]:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from keras.preprocessing import text, sequence
from keras.utils import to_categorical
from keras.utils import multi_gpu_model
import keras
import os
import h5py
import re
import warnings
warnings.filterwarnings('ignore')
# model
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class MultiHeadSelfAttention(layers.Layer):
def __init__(self, embed_dim, num_heads=8):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError(
f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"
)
self.projection_dim = embed_dim // num_heads
self.query_dense = layers.Dense(embed_dim)
self.key_dense = layers.Dense(embed_dim)
self.value_dense = layers.Dense(embed_dim)
self.combine_heads = layers.Dense(embed_dim)
def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
# x.shape = [batch_size, seq_len, embedding_dim]
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs) # (batch_size, seq_len, embed_dim)
key = self.key_dense(inputs) # (batch_size, seq_len, embed_dim)
value = self.value_dense(inputs) # (batch_size, seq_len, embed_dim)
query = self.separate_heads(
query, batch_size
) # (batch_size, num_heads, seq_len, projection_dim)
key = self.separate_heads(
key, batch_size
) # (batch_size, num_heads, seq_len, projection_dim)
value = self.separate_heads(
value, batch_size
) # (batch_size, num_heads, seq_len, projection_dim)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(
attention, perm=[0, 2, 1, 3]
) # (batch_size, seq_len, num_heads, projection_dim)
concat_attention = tf.reshape(
attention, (batch_size, -1, self.embed_dim)
) # (batch_size, seq_len, embed_dim)
output = self.combine_heads(
concat_attention
) # (batch_size, seq_len, embed_dim)
return output
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super(TransformerBlock, self).__init__()
self.att = MultiHeadSelfAttention(embed_dim, num_heads)
self.ffn = keras.Sequential([layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),] )
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs):
attn_output = self.att(inputs)
attn_output = self.dropout1(attn_output)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output)
return self.layernorm2(out1 + ffn_output)
class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, emded_dim):
super(TokenAndPositionEmbedding, self).__init__()
self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=emded_dim)
self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=emded_dim)
def call(self, x):
maxlen = tf.shape(x)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
x = self.token_emb(x)
return x + positions
class NeuralNetwork(weight_name="transformer_model_weights.h5"):
def __init__(self):
pass
def load_model(self):
vocab_size = 40000 # Only consider the top 40k words
embed_dim = 120 # Embedding size for each token
num_heads = 8 # Number of attention heads
ff_dim = 32 # Hidden layer size in feed forward network inside transformer
max_len_padding=75
inputs = layers.Input(shape=(max_len_padding,))
dense_init = keras.initializers.he_uniform()
embedding_layer = TokenAndPositionEmbedding(max_len_padding, vocab_size, embed_dim)
x = embedding_layer(inputs)
transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
x = transformer_block(x)
x = keras.layers.Conv1D(128, 7, padding="valid")(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.LeakyReLU()(x)
x = layers.Dropout(0.2)(x)
x_1 = keras.layers.GlobalAveragePooling1D()(x)
x_2 = keras.layers.GlobalMaxPooling1D()(x)
x_a = keras.layers.Concatenate()([x_1,x_2])
x=keras.layers.Dense(256, kernel_initializer=dense_init)(x_a)
x=keras.layers.LeakyReLU()(x)
x=keras.layers.Dropout(0.2)(x)
x=keras.layers.Dense(128,kernel_initializer=dense_init)(x)
x=keras.layers.LeakyReLU()(x)
x_out=keras.layers.Dense(3827, activation="softmax",name="new_cat")(x)
model=keras.models.Model(inputs, x_out)
my_call_es = keras.callbacks.EarlyStopping(verbose=1, patience=5)
my_call_cp = keras.callbacks.ModelCheckpoint('transformer_v3_singlegpu_{epoch:02d}.h5', save_weights_only=True, period=1)
# my_opt = keras.optimizers.Nadam()
model.compile(loss=['categorical_crossentropy'], optimizer="adam", metrics=['acc'])
model.load_weights(weight_name)
return model