-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathetl.py
176 lines (137 loc) · 5.68 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 6 10:28:33 2015
@author: nate
"""
import pandas as pd
db_name = 'police_shootings.sqlite'
schema_file = 'police_shootings_db_schema.sql'
fe_url = 'https://docs.google.com/spreadsheet/pub?key=0Aul9Ys3cd80fdHNuRG5VeWpfbnU4eVdIWTU3Q0xwSEE&single=TRUE&gid=0&output=csv'
ds_url = 'https://docs.google.com/spreadsheets/d/1cEGQ3eAFKpFBVq1k2mZIy5mBPxC6nBTJHzuSWtZQSVw/export?format=csv'
fe_cols = 23
ds_cols = 27
fe = pd.read_csv(fe_url)
ds = pd.read_csv(ds_url)
def shape_check(df, cols):
check = df.shape[1] == cols
return(check)
if shape_check(fe, 23) == False:
print('data frame has incorrect number of columns')
if shape_check(ds, 27) == False:
print('data frame has incorrect number of columns')
def name_processor(df, col_name):
names = df[col_name]
names = names.str.lower()
names = names.str.replace('\d', '') # remove numeric characters
names = names.str.replace(',', '')
names = names.str.replace('[.]', '')
suffixes = []
cnt = 0
for name in names:
w = str(name).rsplit(' ')[-1]
if w in ['jr', 'sr', 'ii', 'iii', 'iv']:
suffixes.append(w)
names[cnt] = str(names[cnt]).replace(' ' + w, '')
continue
else:
suffixes.append('')
cnt += 1
def try_pop(lst, index = -1):
try:
return(lst.pop(index))
except:
return('')
names = names.map(lambda x: str(x).rsplit(' '))
last_name = names.map(lambda x: try_pop(x, index = -1))
first_name = names.map(lambda x: try_pop(x, index = 0))
middle_name = names.map(lambda x: str(' '.join(x)))
return(last_name, first_name, middle_name, suffixes)
col_mapping = \
{'fe': {'name': 'Subject\'s name', \
'age': 'Subject\'s age', \
'gender': 'Subject\'s gender', \
'race': 'Subject\'s race', \
'hispanic_latin': None, \
'mental_illness': 'Symptoms of mental illness?', \
'date': 'Date of injury resulting in death (month/day/year)', \
'address': 'Location of injury (address)', \
'city': 'Location of death (city)', \
'state': 'Location of death (state)', \
'zip_code': 'Location of death (zip code)', \
'county': 'Location of death (county)', \
'agency': 'Agency responsible for death', \
'source': 'Link to news article or photo of official document', \
'justified': 'Official disposition of death (justified or other)', \
'description': 'A brief description of the circumstances surrounding the death' \
}, \
'ds': {'name': 'Victim Name', \
'age': 'Victim\'s Age', \
'gender': 'Victim\'s Gender', \
'race': 'Race', \
'hispanic_latin': 'Hispanic or Latino Origin', \
'mental_illness': None, \
'date': 'Date of Incident', \
'address': None, \
'city': 'City', \
'state': 'State', \
'zip_code': None, \
'county': 'County', \
'agency': 'Agency Name', \
'source': 'Source Link', \
'justified': 'Was the Shooting Justified?', \
'description': 'Summary' \
}
}
def shootings_df_process(df_name, col_mappings):
df = eval(df_name)
length = df.shape[0]
cols_names = list(col_mappings[df_name].keys())
cols_select = list(col_mappings[df_name].values())
# create an empty dataframe as a destination for data
df_output = pd.DataFrame(columns = col_mapping[df_name].keys())
cnt = 0
for col in cols_select:
if col == None:
col_values = [None] * length
else:
col_values = df[col]
df_output[cols_names[cnt]] = col_values
cnt += 1
return(df_output)
from os import path
from sqlite3 import connect
db_exists = path.exists(db_name)
con.close()
with connect(db_name) as con:
if not db_exists:
with open(schema_file, 'rt') as f:
schema = f.read()
con.executescript(schema)
con = connect(db_name)
ds.to_sql(con = con, if_exists = 'replace', name = 'raw_deadspin')
fe.to_sql(con = con, if_exists = 'replace', name = 'raw_fatal_encounters')
con.close()
ds_processed = shootings_df_process('ds', col_mapping)
ds_processed['source'] = 'deadspin'
fe_processed = shootings_df_process('fe', col_mapping)
fe_processed['source'] = 'fatal_encounters'
shootings = pd.concat([ds_processed, fe_processed]).reset_index()
last, first, middle, suffix = name_processor(shootings, 'name')
shootings['name_last'] = last
shootings['name_first'] = first
shootings['name_middle'] = middle
shootings['name_suffix'] = suffix
shootings = shootings.drop('name', 1)
shootings['race_black'] = shootings['race'].str.contains('african|black', case = False, na = False)
shootings['race_white'] = shootings['race'].str.contains('white|caucasian', case = False, na = False)
shootings['race_hispanic'] = shootings['race'].str.contains('latin|hispanic', case = False, na = False)
shootings['race_asian'] = shootings['race'].str.match('asian', case = False, na = False)
shootings['race_nativeamer'] = shootings['race'].str.contains('native', case = False, na = False)
shootings = shootings.drop('race', 1)
shootings['state'] = shootings['state'].map(lambda x: str(x).split(' ')[0])
shootings['mental_illness'] = shootings['mental_illness'].map(lambda x: str(x).lower() == 'yes')
shootings['gender_male'] = shootings['gender'].map(lambda x: str(x).lower() == 'male')
con = connect(db_name)
# fix here: https://goo.gl/8nVjn3
shootings.to_sql(name = 'shootings', con = con, if_exists = 'replace')
con.close()