forked from facebookresearch/optimizers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshampoo_ddp_distributor.py
466 lines (395 loc) · 18.1 KB
/
shampoo_ddp_distributor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree.
"""
import logging
from functools import partial
from itertools import islice
from typing import Any
import torch
import torch.distributed as dist
from distributed_shampoo.shampoo_types import (
CommunicationDType,
DDPShampooConfig,
PARAMS,
)
from distributed_shampoo.utils.shampoo_block_info import DDPBlockInfo
from distributed_shampoo.utils.shampoo_dist_utils import get_device_mesh
from distributed_shampoo.utils.shampoo_distributor import DistributorInterface
from distributed_shampoo.utils.shampoo_utils import (
compress_list,
distribute_buffer_sizes,
generate_pairwise_indices,
get_dtype_size,
)
from torch import Tensor
from torch.distributed import tensor as dtensor
from torch.distributed.tensor import zeros as dtensor_zeros
logger: logging.Logger = logging.getLogger(__name__)
class DDPDistributor(DistributorInterface):
"""DDP Distributor class.
Handles merging, blocking, and distributing of the parameters at instantiation.
The constructor internally sets up process groups, so torch.distributed must be initialized in advance.
Args:
param_group (dict[str, Any]): Parameter group containing parameters.
distributed_config (DDPShampooConfig): Configuration for DDP Shampoo.
"""
def __init__(
self,
param_group: dict[str, Any],
distributed_config: DDPShampooConfig,
) -> None:
super().__init__(param_group)
# Construct global masked blocked parameters (which is DDP-specific).
self._global_masked_blocked_params: tuple[Tensor, ...] = (
self._global_blocked_params
)
# Check num_trainers_per_group and get global and group sizes.
# NOTE: If num_trainers_per_group = -1, then we use the global world size.
self._global_size: int = dist.get_world_size()
if distributed_config.num_trainers_per_group == -1:
logger.info(
f"Note that {distributed_config.num_trainers_per_group=}! Defaulting to world size {self._global_size}."
)
self._group_size: int = (
distributed_config.num_trainers_per_group
if distributed_config.num_trainers_per_group != -1
else self._global_size
)
# Create flag for distributing parameters instead of search directions.
self._communicate_params: bool = distributed_config.communicate_params
# Determine communication type.
if distributed_config.communication_dtype == CommunicationDType.BF16:
communication_dtype = torch.bfloat16
elif distributed_config.communication_dtype == CommunicationDType.FP16:
communication_dtype = torch.float16
else:
assert distributed_config.communication_dtype in [
CommunicationDType.FP32,
CommunicationDType.DEFAULT,
]
communication_dtype = torch.float32
# Initialize _dist_group and _group_rank.
self._dist_group: dist.ProcessGroup | None = (
dist.distributed_c10d.GroupMember.WORLD
if self._group_size == self._global_size
else dist.new_subgroups(group_size=self._group_size)[0]
)
group_rank: int = dist.get_rank(group=self._dist_group)
# Assign ranks to blocks with their respective buffer size.
buffer_size_ranks = distribute_buffer_sizes(
buffer_sizes=tuple(
blocked_param.numel() * get_dtype_size(communication_dtype)
for blocked_param in self._global_blocked_params
),
group_size=self._group_size,
)
global_block_info_list = self._construct_global_block_info_list(
group_source_ranks=tuple(
group_source_rank for _, group_source_rank in buffer_size_ranks
)
)
# Initialize selectors and local blocked (masked) parameters.
self._distributor_selector: tuple[bool, ...] = tuple(
block_info.group_source_rank == group_rank
for block_info in global_block_info_list
)
self._local_blocked_params: tuple[Tensor, ...] = compress_list(
self._global_blocked_params, self._distributor_selector
)
self._local_masked_blocked_params: tuple[Tensor, ...] = (
self._local_blocked_params
)
self._local_grad_selector: tuple[bool, ...] = (True,) * len(
self._local_blocked_params
)
self._local_block_info_list: tuple[DDPBlockInfo, ...] = compress_list(
global_block_info_list, self._distributor_selector
)
self._construct_distributed_buffers(
buffer_size_ranks=buffer_size_ranks,
communication_dtype=communication_dtype,
group_rank=group_rank,
)
# NOTE: Remove this function once PT2 supports all_gather with functional collective
@torch.no_grad()
@torch.compiler.disable
def all_gather_into_tensor(self) -> None:
dist.all_gather_into_tensor(
self._global_dist_buffer,
self._local_dist_buffer,
group=self._dist_group,
)
@torch.no_grad()
def update_params(
self,
masked_blocked_search_directions: tuple[Tensor, ...],
) -> None:
"""Update params stored inside this distributor according to the input search directions argument.
Args:
masked_blocked_search_directions (tuple[Tensor, ...]): Search directions for each local blocked parameter.
See the comment in the parent class for details.
"""
if self._communicate_params:
# Perform your update to your local masked parameters and copy into buffers.
torch._foreach_add_(
self._local_masked_blocked_params,
masked_blocked_search_directions,
)
torch._foreach_copy_(
self._local_masked_dist_blocked_buffers,
self._local_masked_blocked_params,
)
self.all_gather_into_tensor()
# Copy updated blocked params in global_masked_dist_blocked_buffers
# into global_masked_blocked_params.
torch._foreach_copy_(
self._global_masked_blocked_params,
self._global_masked_dist_blocked_buffers,
)
else:
# Search directions multiplied by alpha are distributed.
# Copy the local search directions to the communication buffer.
torch._foreach_copy_(
self._local_masked_dist_blocked_buffers,
masked_blocked_search_directions,
)
self.all_gather_into_tensor()
# Add search directions in global_masked_dist_blocked_buffers
# to global_masked_blocked_params.
torch._foreach_add_(
self._global_masked_blocked_params,
self._global_masked_dist_blocked_buffers,
)
def _distribute_buffer_sizes(
self,
buffer_sizes: tuple[int, ...],
) -> tuple[tuple[int, int], ...]:
"""Distribute given buffer sizes across ranks in a group.
Buffer sizes will be rounded up for memory allocation. Buffers are distributed such that
total buffer sizes of each rank are as even as possible. This is currently performed
using a greedy algorithm. We do not currently consider computational cost
or kernel launching overheads.
Note: A better distribution strategy should try to minimize the delta of buffer sizes
between the most and the least allocated groups.
Args:
buffer_sizes (tuple[int, ...]): Buffer sizes of blocks to be distributed.
Returns:
buffer_size_ranks (tuple[tuple[int, int], ...]): A list of tuples containing the
buffer size for each block and its assigned rank.
Example:
Assuming ALIGNMENT_BYTES = 64, given buffer_sizes = [128, 64, 500, 256], group_size = 2
-> buffer_size_ranks = [(128, 1), (64, 1), (512, 0), (256, 1)]
"""
return distribute_buffer_sizes(buffer_sizes, self._group_size)
@torch.no_grad()
def _construct_global_block_info_list(
self, group_source_ranks: tuple[int, ...]
) -> tuple[DDPBlockInfo, ...]:
"""Construct the global block info list.
This method creates a list of DDPBlockInfo objects, which contain information
about each parameter block, including its composable block IDs, a function to
allocate zero tensors, a method to retrieve tensors, and the group source rank.
Args:
group_source_ranks (tuple[int, ...]): A list of assigned ranks for each block.
Returns:
tuple[DDPBlockInfo, ...]: A tuple of DDPBlockInfo objects for each parameter block.
"""
return tuple(
DDPBlockInfo(
param=param,
composable_block_ids=self._construct_composable_block_ids(
param_index=param_index, block_index=block_index
),
# Curry a function to capture a local variable "group_source_rank".
allocate_zeros_tensor=partial(
self._allocate_zeros_distributed_tensor,
group_source_rank=group_source_rank,
),
get_tensor=lambda input_tensor: (
input_tensor.to_local()
if isinstance(input_tensor, dtensor.DTensor)
else input_tensor
),
group_source_rank=group_source_rank,
)
for (
(param_index, param),
(buffer_size_ranks_start, buffer_size_ranks_end),
) in zip(
enumerate(self._param_group[PARAMS]),
generate_pairwise_indices(self._global_num_blocks_per_param),
strict=True,
)
for block_index, group_source_rank in enumerate(
islice(
group_source_ranks, buffer_size_ranks_start, buffer_size_ranks_end
)
)
)
@staticmethod
def _split_local_dist_buffers(
buffer_size_ranks: tuple[tuple[int, int], ...],
local_dist_buffers: tuple[torch.Tensor, ...],
) -> tuple[torch.Tensor, ...]:
"""Split distributed buffers for each local rank into views for each assigned block.
Args:
buffer_size_ranks (tuple[tuple[int, int], ...]): A list of tuples containing the
buffer size and an assigned rank for each block.
local_dist_buffers (tuple[torch.Tensor, ...]): A list of local distributed buffers that
correspond to each rank. Each distributed buffer will be split according to the
assigned tensor blocks.
Returns:
splitted_local_dist_buffers (tuple[torch.Tensor, ...]): A list of tuples containing a view of the
local distributed buffer for each tensor block.
Example:
tensor0 = tensor(1024)
tensor1 = tensor(1024)
buffer_size_ranks = [(128, 0), (64, 0), (512, 1), (256, 0)]
local_dist_buffers = [tensor0, tensor1]
-> splitted_local_dist_buffers = [
tensor0's view( 0-128 bytes),
tensor0's view(128-192 bytes),
tensor1's view( 0-512 bytes),
tensor0's view(192-448 bytes),
]
"""
# Create list of lists containing local views of each split tensor for each rank.
split_tensors_list = []
for rank, local_dist_buffer in enumerate(local_dist_buffers):
required_buffer_sizes = [s for s, r in buffer_size_ranks if r == rank]
remainder_size = local_dist_buffer.size(0) - sum(required_buffer_sizes)
assert (
remainder_size >= 0
), f"Local distributed buffer size {local_dist_buffer.size(0)} is "
"not larger than or equal to the sum of buffer sizes {sum(required_buffer_sizes)}!"
split_tensors = torch.split(
local_dist_buffer, required_buffer_sizes + [remainder_size]
)
split_tensors_list.append(split_tensors)
# Obtain ordered buffer ranks containing (view of local buffer, rank).
splitted_local_dist_buffers = []
buffer_indices = [0] * len(
local_dist_buffers
) # index counter for each rank for obtaining right buffer
for _, rank in buffer_size_ranks:
splitted_local_dist_buffers.append(
split_tensors_list[rank][buffer_indices[rank]]
)
buffer_indices[rank] += 1
return tuple(splitted_local_dist_buffers)
def _construct_distributed_buffers(
self,
buffer_size_ranks: tuple[tuple[int, int], ...],
communication_dtype: torch.dtype,
group_rank: int,
) -> None:
"""Construct the distributed buffers for AllGather communications.
Note that this function will construct the distributed buffer for the AllGather
communication. In addition, it massages the distributed buffer to obtain views
of the buffer corresponding to each block assigned to the current rank.
Args:
buffer_size_ranks (tuple[tuple[int, int], ...]): A list of tuples containing the
buffer size and an assigned rank for each block.
communication_dtype (torch.dtype): Data type used for communication.
group_rank (int): Rank of the current process group.
"""
# Calculate buffer size each rank needs.
local_buffer_sizes = tuple(
sum(buffer_size for buffer_size, rank in buffer_size_ranks if rank == i)
for i in range(self._group_size)
)
# Calculate the whole buffer size and obtain buffers for every rank.
max_buffer_size_sum = max(local_buffer_sizes)
total_buffer_size = max_buffer_size_sum * self._group_size
self._global_dist_buffer = torch.zeros(
total_buffer_size,
dtype=torch.int8,
device=self._global_blocked_params[0].device,
)
local_dist_buffers = torch.split(self._global_dist_buffer, max_buffer_size_sum)
splitted_local_dist_buffers = DDPDistributor._split_local_dist_buffers(
buffer_size_ranks, local_dist_buffers
)
# Get local buffer for specific group rank.
self._local_dist_buffer = local_dist_buffers[group_rank]
# Obtain the list of buffers corresponding to each block (ignoring padding).
# Note that each buffer is reshaped into the block's shape and viewed in terms
# of the communication data type.
self._global_dist_blocked_buffers = tuple(
buffer.split(blocked_param.numel() * get_dtype_size(communication_dtype))[0]
.view(communication_dtype)
.view(blocked_param.shape)
for buffer, blocked_param in zip(
splitted_local_dist_buffers, self._global_blocked_params, strict=True
)
)
self._local_dist_blocked_buffers = compress_list(
self._global_dist_blocked_buffers, self._distributor_selector
)
self._global_masked_dist_blocked_buffers = self._global_dist_blocked_buffers
self._local_masked_dist_blocked_buffers = self._local_dist_blocked_buffers
def merge_and_block_gradients(
self,
) -> tuple[Tensor, ...]:
"""Merge and block gradients.
NOTE: This function MUST be called in the step function of the optimizer after the
gradient has been updated.
Returns:
local_masked_blocked_grads (tuple[Tensor, ...]): Local blocked gradients masked with grad existence.
"""
local_masked_blocked_grads = self._merge_and_block_gradients()
if self._previous_global_grad_selector != self._global_grad_selector:
self._previous_global_grad_selector = self._global_grad_selector
# Update _local_grad_selector and _local_masked_blocked_params only when global_grad_selector is changed.
self._local_grad_selector = compress_list(
self._global_grad_selector,
self._distributor_selector,
)
self._local_masked_blocked_params = compress_list(
self._local_blocked_params, self._local_grad_selector
)
# Re-compress DDP-specific tensor lists using the updated selector.
self._global_masked_blocked_params = compress_list(
self._global_blocked_params, self._global_grad_selector
)
self._global_masked_dist_blocked_buffers = compress_list(
self._global_dist_blocked_buffers, self._global_grad_selector
)
self._local_masked_dist_blocked_buffers = compress_list(
self._local_dist_blocked_buffers, self._local_grad_selector
)
return local_masked_blocked_grads
def _allocate_zeros_distributed_tensor(
self,
size: tuple[int, ...],
dtype: torch.dtype,
device: torch.device,
group_source_rank: int,
) -> torch.Tensor:
"""Instantiates distributed tensor using DTensor.
Args:
size (tuple[int, ...]): Shape of desired tensor.
dtype (torch.dtype): DType of desired tensor.
device (torch.device): Device of desired tensor.
group_source_rank (int): Desired source rank of allocated zeros tensor within the process group.
Returns:
out (Tensor): Desired DTensor.
"""
device_mesh_ranks = tuple(
range(
group_source_rank % self._group_size,
self._global_size,
self._group_size,
)
)
return dtensor_zeros(
size,
dtype=dtype,
device_mesh=get_device_mesh(
device_type=device.type, mesh=device_mesh_ranks
),
placements=[dtensor.Replicate()],
)