forked from facebookresearch/optimizers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshampoo_utils_test.py
235 lines (194 loc) · 7.82 KB
/
shampoo_utils_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree.
"""
import re
import unittest
from operator import methodcaller
import torch
from distributed_shampoo.utils.shampoo_utils import (
compress_list,
distribute_buffer_sizes,
generate_pairwise_indices,
get_dtype_size,
merge_small_dims,
multi_dim_split,
ParameterizeEnterExitContext,
)
class MergeSmallDimsTest(unittest.TestCase):
def test_merge_all_small_dims(self) -> None:
dims = (1, 2, 5, 1)
merged_dims = (10,)
threshold = 10
self.assertEqual(merge_small_dims(dims, threshold), merged_dims)
def test_merge_some_small_dims(self) -> None:
dims = (1, 2, 5, 1)
merged_dims = (2, 5)
threshold = 1
self.assertEqual(merge_small_dims(dims, threshold), merged_dims)
def test_merge_small_dims_for_single_dim(self) -> None:
dims = torch.Size([2])
merged_dims = (2,)
threshold = 10
self.assertEqual(merge_small_dims(dims, threshold), merged_dims)
def test_merge_small_dims_all_ones(self) -> None:
dims = (1, 1, 1, 1)
merged_dims = (1,)
threshold = 10
self.assertEqual(merge_small_dims(dims, threshold), merged_dims)
threshold = 1
self.assertEqual(merge_small_dims(dims, threshold), merged_dims)
def test_merge_small_dims_empty(self) -> None:
merged_dims = (0,)
threshold = 10
self.assertEqual(
merge_small_dims(tensor_shape=(0,), threshold=threshold), merged_dims
)
self.assertEqual(
merge_small_dims(tensor_shape=(0, 1), threshold=threshold), merged_dims
)
self.assertEqual(
merge_small_dims(tensor_shape=(0, 1, 5, 10, 20), threshold=threshold),
merged_dims,
)
class MultiDimSplitTest(unittest.TestCase):
def test_multi_dim_split_for_one_dim(self) -> None:
grad = torch.arange(10).reshape(5, 2)
expected_split_grad = (
torch.arange(6).reshape(3, 2),
torch.arange(6, 10).reshape(2, 2),
)
torch.testing.assert_close(
multi_dim_split(grad, split_size=3), expected_split_grad
)
def test_multi_dim_split_for_two_dim(self) -> None:
grad = torch.arange(15).reshape(5, 3)
expected_split_grad = (
torch.tensor([[0, 1], [3, 4]]),
torch.tensor([[2], [5]]),
torch.tensor([[6, 7], [9, 10]]),
torch.tensor([[8], [11]]),
torch.tensor([[12, 13]]),
torch.tensor([[14]]),
)
torch.testing.assert_close(
multi_dim_split(grad, split_size=2), expected_split_grad
)
def test_multi_dim_split_without_spliting(self) -> None:
grad = torch.arange(15).reshape(5, 3)
expected_split_grad = (
torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14]]),
)
torch.testing.assert_close(
multi_dim_split(grad, split_size=5), expected_split_grad
)
class CompressListTest(unittest.TestCase):
def test_compress_list(self) -> None:
self.assertTupleEqual(compress_list([1, 2, 3], (True, True, False)), (1, 2))
self.assertTupleEqual(compress_list([1, 2, 3], (False, True, True)), (2, 3))
self.assertTupleEqual(compress_list([1, 2, 3], (True, False, True)), (1, 3))
def test_compress_list_with_different_size(self) -> None:
self.assertRaisesRegex(
AssertionError,
re.escape("Inconsistent lengths"),
compress_list,
complete_list=[1, 2, 3],
selector=(True, False),
)
class GetDTypeSizeTest(unittest.TestCase):
def test_get_dtype_size(self) -> None:
self.assertEqual(get_dtype_size(torch.int64), 8)
self.assertEqual(get_dtype_size(torch.float32), 4)
self.assertEqual(get_dtype_size(torch.bfloat16), 2)
self.assertEqual(get_dtype_size(torch.bool), 1)
class GeneratePairwiseIndicesTest(unittest.TestCase):
def test_generate_pairwise_indices(self) -> None:
input_tuple = (1, 3, 2)
expected_pairwise_indices = [(0, 1), (1, 4), (4, 6)]
self.assertListEqual(
list(generate_pairwise_indices(input_tuple)), expected_pairwise_indices
)
def test_generate_pairwise_indices_with_empty_list(self) -> None:
input_tuple = ()
expected_pairwise_indices: list[int] = []
self.assertListEqual(
list(generate_pairwise_indices(input_tuple)), expected_pairwise_indices
)
class ParameterizeEnterExitContextTest(unittest.TestCase):
"""Test suite for the ParameterizeEnterExitContext class.
This test case verifies the functionality of the ParameterizeEnterExitContext
class, ensuring that the enter and exit methods are called correctly on the
input object, and that the object's state is modified as expected.
"""
def test_parameterize_enter_exit_context(self) -> None:
"""Test the enter and exit context management.
This test creates an instance of a TestClass, which has enter and exit
methods that modify an internal variable. It then uses the
ParameterizeEnterExitContext to ensure that the enter method is called
upon entering the context and the exit method is called upon exiting,
verifying the changes in the internal state of the TestClass instance.
"""
class TestClass:
def __init__(self) -> None:
self._test_var = 0
def enter(self) -> None:
self._test_var = 1
def exit(self) -> None:
self._test_var = -1
@property
def test_var(self) -> int:
return self._test_var
test_class = TestClass()
with ParameterizeEnterExitContext(
input_with_enter_exit_context=test_class,
enter_method_caller=methodcaller("enter"),
exit_method_caller=methodcaller("exit"),
):
# Due to the invocation of test_class.enter(), the state of test_class.test_var should be 1.
self.assertEqual(test_class.test_var, 1)
# Due to the invocation of test_class.exit(), the state of test_class.test_var should be -1.
self.assertEqual(test_class.test_var, -1)
class DistributeBufferSizesTest(unittest.TestCase):
def test_distribute_buffer_sizes(self) -> None:
# Test case 1: Even distribution of buffer sizes
buffer_sizes = (128, 64, 500, 256)
group_size = 2
expected_result: tuple[tuple[int, int], ...] = (
(128, 1),
(64, 1),
(512, 0),
(256, 1),
)
self.assertEqual(
distribute_buffer_sizes(buffer_sizes, group_size), expected_result
)
# Test case 2: Single group
buffer_sizes = (128, 64, 500, 256)
group_size = 1
expected_result: tuple[tuple[int, int], ...] = (
(128, 0),
(64, 0),
(512, 0),
(256, 0),
)
self.assertEqual(
distribute_buffer_sizes(buffer_sizes, group_size), expected_result
)
# Test case 3: More groups than buffers
buffer_sizes_small = (128, 64)
group_size = 4
expected_result_small: tuple[tuple[int, int], ...] = ((128, 0), (64, 1))
self.assertEqual(
distribute_buffer_sizes(buffer_sizes_small, group_size),
expected_result_small,
)
# Test case 4: Empty buffer sizes
buffer_sizes_empty = ()
group_size = 2
expected_result_empty = ()
self.assertEqual(
distribute_buffer_sizes(buffer_sizes_empty, group_size),
expected_result_empty,
)