This code was used to process Diffusion-Weighted Images (DWI) for the QuantConn Challenge. QuantConn contributors:
Nancy R. Newlin, Vanderbilt University, Nashville, TN
Neda Jahanshad, Keck School of Medicine of USC, Los Angeles, CA
Kurt Schilling, Vanderbilt University, Nashville, TN
Daniel Moyer, Vanderbilt University, Nashville, TN
Eleftherios Garyfallidis, Indiana University Bloomington, Bloomington, IN
Bennett A. Landman, Vanderbilt University, Nashville, TN
Serge Koudoro, Indiana University Bloomington, Bloomington, IN
Bramsh Chandio, Keck School of Medicine of USC, Los Angeles, CA
http://cmic.cs.ucl.ac.uk/cdmri/challenge.html
Pull the github repo. All libraries needed for processing will be set up with singularity build (mrtrix, fsl, freesurfer, dipy, nibabel, python, etc)
Build the singularity.
sudo singularity build --sandbox Prototype NancysSingularity
Run the singularity.
You will need to bind directories for (1) Diffusion data, (2) Freesurfer output, and (3) output directory.
sudo singularity shell --bind /path/to/dwi/:/DIFFUSION/,/path/to/freesurfer/:/FREESURFER/,/path/for/outputs/:/OUTPUTS/ --writable test1
- The full output from running freesurfer on a T1 from the subject. (Has
mri/directory) - Example freesurfer command for linux:
recon-all -i ${T1wImage} -subjid ${Name of subject specific dir} -sd ${Location of freesurfer installation} -all
- We expect the names to have
"dwi"and extnsions".nii.gz",".bvec", and".bval"
When running singularity run ..., /CODE/main.sh is executed. This script runs the following processing:
- Tensor fitting
- b0 extraction
- Extract Desikan-Killany ROIs from
aparc+aseg.nii.gz(freesurfer output) - Registration between freesurfer parcellation and diffusion b0
- Estimate response functions
- Get fiber orientation distribution functions (fODFs)
- Get 5tt mask
- Get GMWM boundary
- Tractography
- Connectomics
- Compute graph measures from connectomes
MRTrix:
- Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C. H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202, 116137. https://doi.org/10.1016/J.NEUROIMAGE.2019.116137
DiPy:
- Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux, M., & Nimmo-Smith, I. (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 8(FEB). https://doi.org/10.3389/FNINF.2014.00008/ABSTRACT
Brain Connectivity Toolbox:
- Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/J.NEUROIMAGE.2009.10.003
Streamline Count Invariant adjustment to complex network measures:
- Newlin, N. R., Rheault, F., Schilling, K. G., & Landman, B. A. (2023). Characterizing Streamline Count Invariant Graph Measures of Structural Connectomes. Journal of Magnetic Resonance Imaging. https://doi.org/10.1002/JMRI.28631
FSL:
- Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. https://doi.org/10.1016/J.NEUROIMAGE.2011.09.015