-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
426 lines (339 loc) · 16.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import os
import json
from typing import Optional, Tuple, Dict, NoReturn
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import transformers
from transformers import BartTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from arguments import add_train_args, add_predict_args, add_wandb_args
import models
from inference import predict, get_top_k_sentences, extract_sentences, generate_summary
from utils import set_all_seeds, collate_fn, freeze, unfreeze_all, np_sigmoid, compute_rouge_l
from dataset import SummaryDataset
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def train_step(args, model, tokenizer, batch, device) -> Tuple[torch.FloatTensor, Dict[str, float]]:
if batch["labels"] is not None:
ext_input_ids = shift_tokens_right(
batch["input_ids"], model.config.pad_token_id, model.config.decoder_start_token_id,
)
gen_input_ids = shift_tokens_right(
batch["labels"], model.config.pad_token_id, model.config.decoder_start_token_id,
)
input_ids = batch["input_ids"].to(device) # (B, L_src)
attention_mask = batch["attention_mask"].to(device) # (B, L_src)
answers = batch["answers"].to(device) # 추출요약 (B, 3)
labels = batch["labels"].to(device) # 생성요약 (B, L_tgt)
B = input_ids.size(0)
MAX_NUM = torch.max(input_ids.eq(model.config.eos_token_id).sum(1))
encoder_out = model.model.encoder(input_ids=input_ids, attention_mask=attention_mask)
ext_decoder_out = model.model.decoder(
input_ids=ext_input_ids.to(device),
encoder_hidden_states=encoder_out[0],
encoder_attention_mask=attention_mask,
)
gen_decoder_out = model.model.decoder(
input_ids=gen_input_ids.to(device),
encoder_hidden_states=encoder_out[0],
encoder_attention_mask=attention_mask,
)
ext_hidden_states = ext_decoder_out[0] # [B, L, D]
gen_hidden_states = gen_decoder_out[0]
# extraction part
ext_logits = model.classification_head(ext_hidden_states).squeeze(-1) # [B, L]
logits = torch.full((B, MAX_NUM), -1e9, dtype=torch.float).to(device) # [B, MAX_NUM]
for i in range(B):
_logit = ext_logits[i][input_ids[i].eq(model.config.eos_token_id)]
l = _logit.size(0)
logits[i, 0:l] = _logit
one_hot = torch.zeros((B, MAX_NUM)).to(device)
for i in range(B):
one_hot[i,:].index_fill_(0, answers[i][answers[i] >= 0], 1.0)
ext_labels = one_hot.clone()
ext_loss_fn = nn.BCEWithLogitsLoss()
ext_loss = ext_loss_fn(logits, ext_labels) # [B]
# generation part
gen_logits = model.lm_head(gen_hidden_states) + model.final_logits_bias
gen_loss_fn = nn.CrossEntropyLoss(reduction='none')
gen_loss = gen_loss_fn(gen_logits.view(-1, model.config.vocab_size), labels.view(-1)) # [B*L]
gen_loss = gen_loss.view(B, -1) # [B, L]
gen_loss = gen_loss.mean(dim=1) # [B]
if args.freeze_backbone:
total_loss = ext_loss
metrics = {"ext_loss": ext_loss.item(), "ext_logits": logits}
else:
total_loss = args.loss_alpha * ext_loss + (1-args.loss_alpha) * gen_loss.mean()
metrics = {"ext_loss": ext_loss.item(), "gen_loss": gen_loss.mean().item(), "ext_logits": logits}
# if using prediction module
if args.prediction_module is not None:
pred_out = model.predict_module(ext_hidden_states) # [B]
if args.prediction_module.lower() == "lpm":
target_out = gen_loss.clone().detach() # target of loss prediction module; [B]
elif args.prediction_module.lower() == "rpm":
model.eval()
with torch.no_grad():
top_ext_ids = get_top_k_sentences(
logits=logits.clone().detach().cpu(),
eos_positions=batch["eos_positions"],
k = args.top_k,
)
batch = extract_sentences(batch["input_ids"], batch["eos_positions"], top_ext_ids, tokenizer)
generated_ids = generate_summary(args, model, batch, device)
REMOVE_IDS = np.array([tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id, model.config.decoder_start_token_id])
target_out = compute_rouge_l(generated_ids.cpu().numpy(), labels.cpu().numpy(), REMOVE_IDS)["f1"] # set Rouge-L F1 score as target output
target_out = torch.from_numpy(target_out).to(device) # target of rouge prediction module; [B]
if args.pred_loss_function is not None and args.pred_loss_function.lower() == "l1":
pred_loss_fn = nn.L1Loss()
else:
pred_loss_fn = nn.MSELoss()
pred_loss = pred_loss_fn(pred_out, target_out)
total_loss += args.loss_beta * pred_loss
metrics.update({"pred_loss": pred_loss.item()})
return total_loss, metrics
def train_loop(args, model, tokenizer, train_dl, eval_dl, optimizer, prev_step: int = 0) -> int:
step = prev_step
model.train()
optimizer.zero_grad()
ext_losses = []
gen_losses = []
pred_losses = []
all_logits = []
if args.use_wandb:
import wandb
if args.do_train:
tqdm_bar = tqdm(train_dl)
for batch in tqdm_bar:
model.train()
device = torch.device("cpu") if args.no_cuda or not torch.cuda.is_available() else torch.device("cuda")
loss, returned_dict = train_step(args, model, tokenizer, batch, device)
loss.backward()
ext_losses.append(returned_dict["ext_loss"])
if not args.freeze_backbone:
gen_losses.append(returned_dict["gen_loss"])
if args.prediction_module is not None:
pred_losses.append(returned_dict["pred_loss"])
all_logits.append(returned_dict["ext_logits"].detach().cpu().numpy().flatten())
step += 1
if (step+1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
all_logits = np.hstack(all_logits)
all_probs = np_sigmoid(all_logits)
hist = np.histogram(all_probs)
train_metrics = {
"train/ext_loss": np.mean(ext_losses),
"train/gen_loss": np.mean(gen_losses),
"train/pred_loss": np.mean(pred_losses),
"train/probs": wandb.Histogram(np_histogram=hist),
"step": step,
}
if args.use_wandb:
wandb.log(train_metrics)
ext_losses = []
gen_losses = []
pred_losses = []
all_logits = []
if args.do_eval and (step+1) % args.eval_steps == 0:
eval(args, model, tokenizer, eval_dl, step)
tqdm_bar.set_description(f"Train step {step} ext_loss {np.mean(ext_losses):.3f} gen_loss {np.mean(gen_losses):.3f} pred_loss {np.mean(pred_losses):.3f}")
return step
def eval(args, model, tokenizer, eval_dl, step) -> Dict[str, float]:
device = torch.device("cpu") if args.no_cuda or not torch.cuda.is_available() else torch.device("cuda")
eval_metrics = eval_loop(model, tokenizer, eval_dl, device)
eval_metrics = {("eval/" + k): v for k, v in eval_metrics.items()}
eval_metrics["step"] = step
print(eval_metrics)
if args.use_wandb:
import wandb
wandb.log(eval_metrics)
return eval_metrics
def eval_loop(model, tokenizer, eval_dl, device) -> Dict[str, float]:
if args.use_wandb:
import wandb
model.eval()
ext_loss = 0.0
gen_loss = 0.0
pred_loss = 0.0
all_logits = []
n = 0
with torch.no_grad():
for batch in tqdm(eval_dl):
if batch["labels"] is not None:
ext_input_ids = shift_tokens_right(
batch["input_ids"], model.config.pad_token_id, model.config.decoder_start_token_id,
)
gen_input_ids = shift_tokens_right(
batch["labels"], model.config.pad_token_id, model.config.decoder_start_token_id,
)
input_ids = batch["input_ids"].to(device) # (B, L_src)
attention_mask = batch["attention_mask"].to(device) # (B, L_src)
answers = batch["answers"].to(device) if "answers" in batch.keys() else None # 추출요약 (B, 3)
labels = batch["labels"].to(device) if "labels" in batch.keys() else None
B = input_ids.size(0)
MAX_NUM = torch.max(input_ids.eq(model.config.eos_token_id).sum(1))
encoder_out = model.model.encoder(input_ids=input_ids, attention_mask=attention_mask)
ext_decoder_out = model.model.decoder(
input_ids=ext_input_ids.to(device),
encoder_hidden_states=encoder_out[0],
encoder_attention_mask=attention_mask,
)
gen_decoder_out = model.model.decoder(
input_ids=gen_input_ids.to(device),
encoder_hidden_states=encoder_out[0],
encoder_attention_mask=attention_mask,
)
ext_hidden_states = ext_decoder_out[0] # last hidden state [B, L, D]
gen_hidden_states = gen_decoder_out[0]
# extraction part
ext_logits = model.classification_head(ext_hidden_states).squeeze(-1) # [B, L]
logits = torch.full((B, MAX_NUM), -1e9, dtype=torch.float).to(device) # [B, MAX_NUM]
for i in range(B):
_logit = ext_logits[i][input_ids[i].eq(model.config.eos_token_id)]
l = _logit.size(0)
logits[i, 0:l] = _logit
one_hot = torch.zeros((B, MAX_NUM)).to(device)
for i in range(B):
one_hot[i,:].index_fill_(0, answers[i][answers[i] >= 0], 1.0)
ext_labels = one_hot.clone()
ext_loss_fn = nn.BCEWithLogitsLoss()
ext_loss_b = ext_loss_fn(logits, ext_labels) # [B]
# generation part
gen_logits = model.lm_head(gen_hidden_states) + model.final_logits_bias
gen_loss_fn = nn.CrossEntropyLoss(reduction='none')
gen_loss_b = gen_loss_fn(gen_logits.view(-1, model.config.vocab_size), labels.view(-1)) # [B*L]
gen_loss_b = gen_loss_b.view(B, -1) # [B, L]
gen_loss_b = gen_loss_b.mean(dim=1) # [B]
all_logits.append(logits.cpu().numpy().flatten())
# weighted sum
size = len(input_ids)
ext_loss = (n * ext_loss + size * ext_loss_b.item()) / (n + size)
gen_loss = (n * gen_loss + size * gen_loss_b.mean().item()) / (n + size)
# if using prediction module
if args.prediction_module is not None:
pred_out = model.predict_module(ext_hidden_states) # [B]
if args.prediction_module.lower() == "lpm":
target_out = gen_loss_b.clone().detach() # target of loss prediction module; [B]
elif args.prediction_module.lower() == "rpm":
top_ext_ids = get_top_k_sentences(
logits=logits.clone().detach().cpu(),
eos_positions=batch["eos_positions"],
k = args.top_k,
)
batch = extract_sentences(batch["input_ids"], batch["eos_positions"], top_ext_ids, tokenizer)
generated_ids = generate_summary(args, model, batch, device)
REMOVE_IDS = np.array([tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id, model.config.decoder_start_token_id])
target_out = compute_rouge_l(generated_ids.cpu().numpy(), labels.cpu().numpy(), REMOVE_IDS)["f1"] # set Rouge-L F1 score as target output
target_out = torch.from_numpy(target_out).to(device) # target of rouge prediction module; [B]
pred_loss_fn = nn.MSELoss()
pred_loss_b = pred_loss_fn(pred_out, target_out)
# weighted sum
pred_loss = (n * pred_loss + size * pred_loss_b.item()) / (n + size)
n += size
all_logits = np.hstack(all_logits)
all_probs = np_sigmoid(all_logits)
hist = np.histogram(all_probs)
return {
"ext_loss": ext_loss,
"gen_loss": gen_loss if not args.freeze_backbone else None,
"pred_loss": pred_loss if args.prediction_module else None,
"probs": wandb.Histogram(np_histogram=hist) if args.use_wandb else None,
}
def main(args):
if args.use_wandb:
import wandb
wandb.init(
# project=args.wandb_project,
# entity=args.wandb_entity,
# name=args.wandb_run_name,
)
wandb.config.update(args)
if args.seed:
set_all_seeds(args.seed, verbose=True)
# load config, tokenizer, model
MODEL_NAME = "gogamza/kobart-summarization"
config = BartConfig.from_pretrained(MODEL_NAME)
tokenizer = BartTokenizerFast.from_pretrained(MODEL_NAME)
model = getattr(models, args.model_arch).from_pretrained(MODEL_NAME)
# freeze backbone
if args.freeze_backbone:
print("== Frozen Layers =================================================")
print(freeze(model, ["model", "lm_head"], exact=False))
print("====================================================================")
wandb.watch(model, log='all', log_freq=500)
train_dataset = SummaryDataset(args.train_path, tokenizer, is_train=True) if args.do_train else None
eval_dataset = SummaryDataset(args.eval_path, tokenizer, is_train=True) if args.do_eval or args.do_predict else None
if train_dataset is not None:
print(f"train_dataset length: {len(train_dataset)}")
if eval_dataset is not None:
print(f"eval_dataset length: {len(eval_dataset)}")
train_dl = DataLoader(
train_dataset,
args.per_device_train_batch_size,
shuffle=True,
collate_fn=lambda x: collate_fn(x, pad_token_idx=tokenizer.pad_token_id),
) if args.do_train else None
eval_dl = DataLoader(
train_dataset if eval_dataset is None else eval_dataset,
args.per_device_eval_batch_size,
shuffle=False,
collate_fn=lambda x: collate_fn(x, pad_token_idx=tokenizer.pad_token_id),
) if args.do_eval or args.do_predict else None
# optimizer
# TODO: LR scheduler
optimizer = optim.AdamW(
model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay,
betas=[args.adam_beta1, args.adam_beta2],
)
# train loop
if not args.no_cuda:
device = torch.device("cpu") if args.no_cuda or not torch.cuda.is_available() else torch.device("cuda")
model.to(device)
model.train()
total_steps = 0
optimizer.zero_grad()
if args.do_train:
for epoch in range(int(args.num_train_epochs)):
print("=" * 10 + "Epoch " + str(epoch+1) + " has started! " + "=" * 10)
total_steps = train_loop(args, model, tokenizer, train_dl, eval_dl, optimizer, total_steps)
# save the trained model at the end of every epoch
model.save_pretrained(os.path.join(args.output_dir, f"epoch_{epoch}"))
if args.do_predict:
print("=" * 10 + "Epoch " + str(epoch+1) + " predict has started! " + "=" * 10)
pred, _ = predict(args, model, eval_dl, tokenizer)
with open(os.path.join(args.output_dir, f"pred_epoch_{epoch}.json"), 'w', encoding="utf-8") as f:
json.dump(pred, f, ensure_ascii=False)
# At the end of the whole training,
# the final evaluation and prediction loop will run!
if args.do_eval:
print("=" * 10 + "The final evaluation loop has started!" + "=" * 10)
eval(args, model, tokenizer, eval_dl, total_steps)
if args.do_predict:
print("=" * 10 + "The final prediction loop has started!" + "=" * 10)
pred_sents, _ = predict(args, model, eval_dl, tokenizer)
with open(os.path.join(args.output_dir, f"pred_final.json"), 'w', encoding="utf-8") as f:
json.dump(pred_sents, f, ensure_ascii=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Train model.")
parser = add_train_args(parser)
parser = add_predict_args(parser)
parser = add_wandb_args(parser)
args = parser.parse_args()
main(args)