Skip to content

Commit 7021b27

Browse files
committed
Cleaned up subheadings.
1 parent fdb9ccf commit 7021b27

File tree

3 files changed

+53
-53
lines changed

3 files changed

+53
-53
lines changed

fall2023/syllabus.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@ If there is an extenuating circumstance, please email the instructor with CBE 60
142142
We will use Python 3 in this class. You have three options for using Python:
143143
1. (Recommended for Most People.) Use Google Colab, which allows you to complete all assignments from any internet-accessible computer.
144144
2. (Recommended for Advanced Users.) Install [anaconda3](https://www.anaconda.com/download/) on your computer. Anaconda is a free distribution of Python that includes standard packages for data analysis and scientific computing. You must install popular packages such as `numpy`, `scipy`, `pandas`, and `matplotlib`.
145-
3. Use anaconda3 installed on any ESC-maintained computer, e.g., B19 in Fitzpatrick Hall.
145+
3. Use anaconda3 installed on any ESC-maintained computer.
146146

147147
## Inclusiveness, Mental Health, and Disabilities
148148

notebooks/04-dev/Linear-Algebra-in-Numpy.ipynb

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@
8686
"cell_type": "markdown",
8787
"metadata": {},
8888
"source": [
89-
"## Property #1\n",
89+
"### Matrix Multiplication\n",
9090
"\n",
9191
"Multiplying two matrices $A$ $\\in$ $\\mathbb{R}^{n \\times m}$ and $B$ $\\in$ $\\mathbb{R}^{m \\times p}$ leads to the product $C \\in$ $\\mathbb{R}^{n \\times p}$ with elements $ \\mathbf{\\{C\\}_{ij}}$ = $\\sum_{k=1}^m \\mathbf{\\{A\\}_{ik}} \\mathbf{\\{B\\}_{kj}}$. This operation is defined only if the number of columns in $A$ and rows of $B$ is the same."
9292
]
@@ -178,7 +178,7 @@
178178
"cell_type": "markdown",
179179
"metadata": {},
180180
"source": [
181-
"## Property #2\n",
181+
"### Matrix Transpose\n",
182182
"\n",
183183
"The *transpose* of $A$ $\\in$ $\\mathbb{R}^{n \\times m}$ is $A^T$ $\\in$ $\\mathbb{R}^{m \\times n}$ with the rows and columns of A interchanged, i.e.$ \\mathbf{\\{A^T\\}_{ij}} = \\mathbf{\\{A\\}_{ji}}$."
184184
]
@@ -224,11 +224,11 @@
224224
"cell_type": "markdown",
225225
"metadata": {},
226226
"source": [
227-
"## Property #3\n",
227+
"### Symmetric Matrix\n",
228228
"\n",
229229
"A *symmetric* matrix $A$ $\\in$ $\\mathbb{R}^{n \\times n}$ satisfies $A = A^T$.\n",
230230
"\n",
231-
"## Property #4\n",
231+
"### Diagonal Matrix\n",
232232
"\n",
233233
"A *diagonal* matrix $A$ $\\in$ $\\mathbb{R}^{n \\times n}$ has nonzero elements only on the diagonal, i.e., $ \\mathbf{\\{A\\}_{ij}} = 0, i \\neq j$."
234234
]
@@ -279,7 +279,7 @@
279279
"cell_type": "markdown",
280280
"metadata": {},
281281
"source": [
282-
"## Property #5\n",
282+
"### Identity Matrix\n",
283283
"\n",
284284
"The *identity* matrix $I \\in \\mathbb{R}^{n \\times n}$ is defined as \n",
285285
"\n",
@@ -381,7 +381,7 @@
381381
"cell_type": "markdown",
382382
"metadata": {},
383383
"source": [
384-
"## Property #1\n",
384+
"### Determinant of Matrix Product\n",
385385
"\n",
386386
"det($AB$) = det($A$)det($B$)"
387387
]
@@ -424,7 +424,7 @@
424424
"cell_type": "markdown",
425425
"metadata": {},
426426
"source": [
427-
"## Property #2\n",
427+
"### Determinant of Transpose\n",
428428
"\n",
429429
"det($A$) = det($A^T$)"
430430
]
@@ -467,9 +467,9 @@
467467
"cell_type": "markdown",
468468
"metadata": {},
469469
"source": [
470-
"## Property #3\n",
470+
"### Determinant with Scalar Product\n",
471471
"\n",
472-
"For an $n \\times n$ matrix with scalar $\\alpha$, det($\\alpha A$) = $\\alpha^n$det($A$)"
472+
"For an $n \\times n$ matrix with scalar $\\alpha$, det($\\alpha A$) = $\\alpha^n$ det($A$)"
473473
]
474474
},
475475
{
@@ -511,7 +511,7 @@
511511
"cell_type": "markdown",
512512
"metadata": {},
513513
"source": [
514-
"## Property #4\n",
514+
"### Determinant of Identify Matrix\n",
515515
"\n",
516516
"For an identity matrix $I$, det($I$) = 1."
517517
]
@@ -622,7 +622,7 @@
622622
"tags": []
623623
},
624624
"source": [
625-
"## Matrix Rank Definition\n"
625+
"### Matrix Rank Definition\n"
626626
]
627627
},
628628
{
@@ -642,7 +642,7 @@
642642
"tags": []
643643
},
644644
"source": [
645-
"## Practice Activities\n"
645+
"### Practice Activities\n"
646646
]
647647
},
648648
{
@@ -777,7 +777,7 @@
777777
"tags": []
778778
},
779779
"source": [
780-
"## Inverse of a Matrix Defnition\n",
780+
"### Inverse of a Matrix Defnition\n",
781781
"\n",
782782
"**Rerference:** Section 2.2 of *Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes*, L. Biegler (2010)"
783783
]
@@ -796,7 +796,7 @@
796796
"cell_type": "markdown",
797797
"metadata": {},
798798
"source": [
799-
"## Practice Activities"
799+
"### Practice Activities"
800800
]
801801
},
802802
{
@@ -984,7 +984,7 @@
984984
"cell_type": "markdown",
985985
"metadata": {},
986986
"source": [
987-
"## Explicit Inverse\n",
987+
"### Explicit Inverse\n",
988988
"\n",
989989
"Calculate $x$ by explicitly using $A_l^{-1}$. Hint: Use linalg.inv( )."
990990
]
@@ -1030,7 +1030,7 @@
10301030
"cell_type": "markdown",
10311031
"metadata": {},
10321032
"source": [
1033-
"## LU Decomposition\n"
1033+
"### LU Decomposition\n"
10341034
]
10351035
},
10361036
{
@@ -1129,7 +1129,7 @@
11291129
"cell_type": "markdown",
11301130
"metadata": {},
11311131
"source": [
1132-
"## Is P orthogonal?"
1132+
"### Is P orthogonal?"
11331133
]
11341134
},
11351135
{
@@ -1181,7 +1181,7 @@
11811181
"cell_type": "markdown",
11821182
"metadata": {},
11831183
"source": [
1184-
"## MATLAB\n",
1184+
"### MATLAB\n",
11851185
"\n",
11861186
"Defines LU decomposition as follows:\n",
11871187
"\n",
@@ -1260,7 +1260,7 @@
12601260
"cell_type": "markdown",
12611261
"metadata": {},
12621262
"source": [
1263-
"## SciPy\n",
1263+
"### SciPy\n",
12641264
"\n",
12651265
"Defines LU decomposition as:\n",
12661266
"\n",
@@ -1344,7 +1344,7 @@
13441344
"tags": []
13451345
},
13461346
"source": [
1347-
"## Verify our answer with `linalg.solve`\n",
1347+
"### Verify our answer with `linalg.solve`\n",
13481348
"\n",
13491349
"Solve the linear system using linalg.solve"
13501350
]
@@ -1464,7 +1464,7 @@
14641464
"tags": []
14651465
},
14661466
"source": [
1467-
"## Eigenvalues/Eigenvectors Definition"
1467+
"### Eigenvalues/Eigenvectors Definition"
14681468
]
14691469
},
14701470
{
@@ -1489,7 +1489,7 @@
14891489
"cell_type": "markdown",
14901490
"metadata": {},
14911491
"source": [
1492-
"## Practice Activities"
1492+
"### Practice Activities"
14931493
]
14941494
},
14951495
{
@@ -1760,7 +1760,7 @@
17601760
"cell_type": "markdown",
17611761
"metadata": {},
17621762
"source": [
1763-
"## Vector Norm Properties"
1763+
"### Vector Norm Properties"
17641764
]
17651765
},
17661766
{
@@ -1780,7 +1780,7 @@
17801780
"cell_type": "markdown",
17811781
"metadata": {},
17821782
"source": [
1783-
"## *P*-norm Properties"
1783+
"### *P*-norm Properties"
17841784
]
17851785
},
17861786
{
@@ -1888,7 +1888,7 @@
18881888
"cell_type": "markdown",
18891889
"metadata": {},
18901890
"source": [
1891-
"## Additional Matrix Norms"
1891+
"### Additional Matrix Norms"
18921892
]
18931893
},
18941894
{
@@ -2015,7 +2015,7 @@
20152015
"cell_type": "markdown",
20162016
"metadata": {},
20172017
"source": [
2018-
"## Frobenius Norm"
2018+
"### Frobenius Norm"
20192019
]
20202020
},
20212021
{

0 commit comments

Comments
 (0)