|
86 | 86 | "cell_type": "markdown", |
87 | 87 | "metadata": {}, |
88 | 88 | "source": [ |
89 | | - "## Property #1\n", |
| 89 | + "### Matrix Multiplication\n", |
90 | 90 | "\n", |
91 | 91 | "Multiplying two matrices $A$ $\\in$ $\\mathbb{R}^{n \\times m}$ and $B$ $\\in$ $\\mathbb{R}^{m \\times p}$ leads to the product $C \\in$ $\\mathbb{R}^{n \\times p}$ with elements $ \\mathbf{\\{C\\}_{ij}}$ = $\\sum_{k=1}^m \\mathbf{\\{A\\}_{ik}} \\mathbf{\\{B\\}_{kj}}$. This operation is defined only if the number of columns in $A$ and rows of $B$ is the same." |
92 | 92 | ] |
|
178 | 178 | "cell_type": "markdown", |
179 | 179 | "metadata": {}, |
180 | 180 | "source": [ |
181 | | - "## Property #2\n", |
| 181 | + "### Matrix Transpose\n", |
182 | 182 | "\n", |
183 | 183 | "The *transpose* of $A$ $\\in$ $\\mathbb{R}^{n \\times m}$ is $A^T$ $\\in$ $\\mathbb{R}^{m \\times n}$ with the rows and columns of A interchanged, i.e.$ \\mathbf{\\{A^T\\}_{ij}} = \\mathbf{\\{A\\}_{ji}}$." |
184 | 184 | ] |
|
224 | 224 | "cell_type": "markdown", |
225 | 225 | "metadata": {}, |
226 | 226 | "source": [ |
227 | | - "## Property #3\n", |
| 227 | + "### Symmetric Matrix\n", |
228 | 228 | "\n", |
229 | 229 | "A *symmetric* matrix $A$ $\\in$ $\\mathbb{R}^{n \\times n}$ satisfies $A = A^T$.\n", |
230 | 230 | "\n", |
231 | | - "## Property #4\n", |
| 231 | + "### Diagonal Matrix\n", |
232 | 232 | "\n", |
233 | 233 | "A *diagonal* matrix $A$ $\\in$ $\\mathbb{R}^{n \\times n}$ has nonzero elements only on the diagonal, i.e., $ \\mathbf{\\{A\\}_{ij}} = 0, i \\neq j$." |
234 | 234 | ] |
|
279 | 279 | "cell_type": "markdown", |
280 | 280 | "metadata": {}, |
281 | 281 | "source": [ |
282 | | - "## Property #5\n", |
| 282 | + "### Identity Matrix\n", |
283 | 283 | "\n", |
284 | 284 | "The *identity* matrix $I \\in \\mathbb{R}^{n \\times n}$ is defined as \n", |
285 | 285 | "\n", |
|
381 | 381 | "cell_type": "markdown", |
382 | 382 | "metadata": {}, |
383 | 383 | "source": [ |
384 | | - "## Property #1\n", |
| 384 | + "### Determinant of Matrix Product\n", |
385 | 385 | "\n", |
386 | 386 | "det($AB$) = det($A$)det($B$)" |
387 | 387 | ] |
|
424 | 424 | "cell_type": "markdown", |
425 | 425 | "metadata": {}, |
426 | 426 | "source": [ |
427 | | - "## Property #2\n", |
| 427 | + "### Determinant of Transpose\n", |
428 | 428 | "\n", |
429 | 429 | "det($A$) = det($A^T$)" |
430 | 430 | ] |
|
467 | 467 | "cell_type": "markdown", |
468 | 468 | "metadata": {}, |
469 | 469 | "source": [ |
470 | | - "## Property #3\n", |
| 470 | + "### Determinant with Scalar Product\n", |
471 | 471 | "\n", |
472 | | - "For an $n \\times n$ matrix with scalar $\\alpha$, det($\\alpha A$) = $\\alpha^n$det($A$)" |
| 472 | + "For an $n \\times n$ matrix with scalar $\\alpha$, det($\\alpha A$) = $\\alpha^n$ det($A$)" |
473 | 473 | ] |
474 | 474 | }, |
475 | 475 | { |
|
511 | 511 | "cell_type": "markdown", |
512 | 512 | "metadata": {}, |
513 | 513 | "source": [ |
514 | | - "## Property #4\n", |
| 514 | + "### Determinant of Identify Matrix\n", |
515 | 515 | "\n", |
516 | 516 | "For an identity matrix $I$, det($I$) = 1." |
517 | 517 | ] |
|
622 | 622 | "tags": [] |
623 | 623 | }, |
624 | 624 | "source": [ |
625 | | - "## Matrix Rank Definition\n" |
| 625 | + "### Matrix Rank Definition\n" |
626 | 626 | ] |
627 | 627 | }, |
628 | 628 | { |
|
642 | 642 | "tags": [] |
643 | 643 | }, |
644 | 644 | "source": [ |
645 | | - "## Practice Activities\n" |
| 645 | + "### Practice Activities\n" |
646 | 646 | ] |
647 | 647 | }, |
648 | 648 | { |
|
777 | 777 | "tags": [] |
778 | 778 | }, |
779 | 779 | "source": [ |
780 | | - "## Inverse of a Matrix Defnition\n", |
| 780 | + "### Inverse of a Matrix Defnition\n", |
781 | 781 | "\n", |
782 | 782 | "**Rerference:** Section 2.2 of *Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes*, L. Biegler (2010)" |
783 | 783 | ] |
|
796 | 796 | "cell_type": "markdown", |
797 | 797 | "metadata": {}, |
798 | 798 | "source": [ |
799 | | - "## Practice Activities" |
| 799 | + "### Practice Activities" |
800 | 800 | ] |
801 | 801 | }, |
802 | 802 | { |
|
984 | 984 | "cell_type": "markdown", |
985 | 985 | "metadata": {}, |
986 | 986 | "source": [ |
987 | | - "## Explicit Inverse\n", |
| 987 | + "### Explicit Inverse\n", |
988 | 988 | "\n", |
989 | 989 | "Calculate $x$ by explicitly using $A_l^{-1}$. Hint: Use linalg.inv( )." |
990 | 990 | ] |
|
1030 | 1030 | "cell_type": "markdown", |
1031 | 1031 | "metadata": {}, |
1032 | 1032 | "source": [ |
1033 | | - "## LU Decomposition\n" |
| 1033 | + "### LU Decomposition\n" |
1034 | 1034 | ] |
1035 | 1035 | }, |
1036 | 1036 | { |
|
1129 | 1129 | "cell_type": "markdown", |
1130 | 1130 | "metadata": {}, |
1131 | 1131 | "source": [ |
1132 | | - "## Is P orthogonal?" |
| 1132 | + "### Is P orthogonal?" |
1133 | 1133 | ] |
1134 | 1134 | }, |
1135 | 1135 | { |
|
1181 | 1181 | "cell_type": "markdown", |
1182 | 1182 | "metadata": {}, |
1183 | 1183 | "source": [ |
1184 | | - "## MATLAB\n", |
| 1184 | + "### MATLAB\n", |
1185 | 1185 | "\n", |
1186 | 1186 | "Defines LU decomposition as follows:\n", |
1187 | 1187 | "\n", |
|
1260 | 1260 | "cell_type": "markdown", |
1261 | 1261 | "metadata": {}, |
1262 | 1262 | "source": [ |
1263 | | - "## SciPy\n", |
| 1263 | + "### SciPy\n", |
1264 | 1264 | "\n", |
1265 | 1265 | "Defines LU decomposition as:\n", |
1266 | 1266 | "\n", |
|
1344 | 1344 | "tags": [] |
1345 | 1345 | }, |
1346 | 1346 | "source": [ |
1347 | | - "## Verify our answer with `linalg.solve`\n", |
| 1347 | + "### Verify our answer with `linalg.solve`\n", |
1348 | 1348 | "\n", |
1349 | 1349 | "Solve the linear system using linalg.solve" |
1350 | 1350 | ] |
|
1464 | 1464 | "tags": [] |
1465 | 1465 | }, |
1466 | 1466 | "source": [ |
1467 | | - "## Eigenvalues/Eigenvectors Definition" |
| 1467 | + "### Eigenvalues/Eigenvectors Definition" |
1468 | 1468 | ] |
1469 | 1469 | }, |
1470 | 1470 | { |
|
1489 | 1489 | "cell_type": "markdown", |
1490 | 1490 | "metadata": {}, |
1491 | 1491 | "source": [ |
1492 | | - "## Practice Activities" |
| 1492 | + "### Practice Activities" |
1493 | 1493 | ] |
1494 | 1494 | }, |
1495 | 1495 | { |
|
1760 | 1760 | "cell_type": "markdown", |
1761 | 1761 | "metadata": {}, |
1762 | 1762 | "source": [ |
1763 | | - "## Vector Norm Properties" |
| 1763 | + "### Vector Norm Properties" |
1764 | 1764 | ] |
1765 | 1765 | }, |
1766 | 1766 | { |
|
1780 | 1780 | "cell_type": "markdown", |
1781 | 1781 | "metadata": {}, |
1782 | 1782 | "source": [ |
1783 | | - "## *P*-norm Properties" |
| 1783 | + "### *P*-norm Properties" |
1784 | 1784 | ] |
1785 | 1785 | }, |
1786 | 1786 | { |
|
1888 | 1888 | "cell_type": "markdown", |
1889 | 1889 | "metadata": {}, |
1890 | 1890 | "source": [ |
1891 | | - "## Additional Matrix Norms" |
| 1891 | + "### Additional Matrix Norms" |
1892 | 1892 | ] |
1893 | 1893 | }, |
1894 | 1894 | { |
|
2015 | 2015 | "cell_type": "markdown", |
2016 | 2016 | "metadata": {}, |
2017 | 2017 | "source": [ |
2018 | | - "## Frobenius Norm" |
| 2018 | + "### Frobenius Norm" |
2019 | 2019 | ] |
2020 | 2020 | }, |
2021 | 2021 | { |
|
0 commit comments