forked from Azure/InferenceSchema
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconftest.py
225 lines (174 loc) · 7.57 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
import numpy as np
import pandas as pd
import pyspark
import pytest
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
from inference_schema.parameter_types.pandas_parameter_type import PandasParameterType
from inference_schema.parameter_types.spark_parameter_type import SparkParameterType
from inference_schema.parameter_types.standard_py_parameter_type import StandardPythonParameterType
from inference_schema.schema_decorators import input_schema, output_schema
from pyspark.sql.session import SparkSession
@pytest.fixture(scope="session")
def numpy_sample_input():
numpy_input_data = [('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))]
return np.array(numpy_input_data, dtype=np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))]))
@pytest.fixture(scope="session")
def numpy_sample_output():
numpy_output_data = [(8.0, 7.0), (6.0, 7.0)]
return np.array(numpy_output_data, dtype='float64, float64')
@pytest.fixture(scope="session")
def decorated_numpy_func(numpy_sample_input, numpy_sample_output):
@input_schema('param', NumpyParameterType(numpy_sample_input))
@output_schema(NumpyParameterType(numpy_sample_output))
def numpy_func(param):
"""
:param param:
:type param: np.ndarray
:return:
:rtype: np.ndarray
"""
assert type(param) is np.ndarray
return param['grades']
return numpy_func
@pytest.fixture(scope="session")
def pandas_sample_input():
pandas_input_data = {'name': ['Sarah', 'John'], 'state': ['WA', 'CA']}
return pd.DataFrame(data=pandas_input_data)
@pytest.fixture(scope="session")
def pandas_sample_output():
pandas_output_data = {'state': ['WA', 'CA']}
return pd.DataFrame(data=pandas_output_data)
@pytest.fixture(scope="session")
def pandas_sample_input_multi_type_column_labels():
pandas_input_data = {'name': ['Sarah', 'John'], 1: ['WA', 'CA']}
return pd.DataFrame(data=pandas_input_data)
@pytest.fixture(scope="session")
def decorated_pandas_func(pandas_sample_input, pandas_sample_output):
@input_schema('param', PandasParameterType(pandas_sample_input))
@output_schema(PandasParameterType(pandas_sample_output))
def pandas_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert type(param) is pd.DataFrame
return pd.DataFrame(param['state'])
return pandas_func
@pytest.fixture(scope="session")
def decorated_pandas_datetime_func():
pandas_sample_timestamp_input = pd.DataFrame({'datetime': pd.Series(['2013-12-31T00:00:00.000Z'],
dtype='datetime64[ns]'),
'days': pd.Series([pd.Timedelta(days=1)])})
@input_schema('param', PandasParameterType(pandas_sample_timestamp_input))
def pandas_datetime_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert type(param) is pd.DataFrame
return pd.DataFrame(param['datetime'])
return pandas_datetime_func
@pytest.fixture(scope="session")
def decorated_pandas_func_split_orient(pandas_sample_input, pandas_sample_output):
@input_schema('param', PandasParameterType(pandas_sample_input, orient='split'))
@output_schema(PandasParameterType(pandas_sample_output, orient='split'))
def pandas_split_orient_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert type(param) is pd.DataFrame
return pd.DataFrame(param['state'])
return pandas_split_orient_func
@pytest.fixture(scope="session")
def decorated_pandas_func_multi_type_column_labels(pandas_sample_input_multi_type_column_labels):
@input_schema('param', PandasParameterType(pandas_sample_input_multi_type_column_labels))
def pandas_split_orient_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert param["name"] is not None
assert param[1] is not None
return param
return pandas_split_orient_func
@pytest.fixture(scope="session")
def decorated_spark_func():
spark_session = SparkSession.builder.config('spark.driver.host', '127.0.0.1').getOrCreate()
spark_input_data = pd.DataFrame({'name': ['Sarah', 'John'], 'state': ['WA', 'CA']})
spark_sample_input = spark_session.createDataFrame(spark_input_data)
spark_output_data = pd.DataFrame({'state': ['WA', 'CA']})
spark_sample_output = spark_session.createDataFrame(spark_output_data)
@input_schema('param', SparkParameterType(spark_sample_input))
@output_schema(SparkParameterType(spark_sample_output))
def spark_func(param):
"""
:param param:
:type param: pyspark.sql.dataframe.DataFrame
:return:
:rtype: pyspark.sql.dataframe.DataFrame
"""
assert type(param) is pyspark.sql.dataframe.DataFrame
return param.select('state')
return spark_func
@pytest.fixture(scope="session")
def standard_sample_input():
return {'name': ['Sarah', 'John'], 'state': ['WA', 'CA']}
@pytest.fixture(scope="session")
def standard_sample_output():
return {'state': ['WA', 'CA']}
@pytest.fixture(scope="session")
def decorated_standard_func(standard_sample_input, standard_sample_output):
@input_schema('param', StandardPythonParameterType(standard_sample_input))
@output_schema(StandardPythonParameterType(standard_sample_output))
def standard_py_func(param):
assert type(param) is dict
return {'state': param['state']}
return standard_py_func
@pytest.fixture(scope="session")
def decorated_nested_func(standard_sample_input, numpy_sample_input, pandas_sample_input, standard_sample_output,
numpy_sample_output, pandas_sample_output):
# input0 are not wrapped by any ParameterTypes hence will be neglected
nested_sample_input = StandardPythonParameterType(
{'input1': PandasParameterType(pandas_sample_input),
'input2': NumpyParameterType(numpy_sample_input),
'input3': StandardPythonParameterType(standard_sample_input),
'input0': 0}
)
nested_sample_output = StandardPythonParameterType(
{'output1': PandasParameterType(pandas_sample_output),
'output2': NumpyParameterType(numpy_sample_output),
'output3': StandardPythonParameterType(standard_sample_output),
'output0': 0}
)
@input_schema('param', nested_sample_input)
@output_schema(nested_sample_output)
def nested_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert type(param) is dict
assert 'input0' in param.keys()
assert 'input1' in param.keys() and type(param['input1']) is pd.DataFrame
assert 'input2' in param.keys() and type(param['input2']) is np.ndarray
assert 'input3' in param.keys() and type(param['input3']) is dict
output0 = param['input0']
output1 = pd.DataFrame(param['input1']['state'])
output2 = param['input2']['grades']
output3 = {'state': param['input3']['state']}
return {'output0': output0, 'output1': output1, 'output2': output2, 'output3': output3}
return nested_func