-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinferencer.py
200 lines (156 loc) · 7.05 KB
/
inferencer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import os
import equinox as eqx
import jax
import jax.numpy as jnp
from jaxtyping import Array, PRNGKeyArray
from ReAct.data.owt import OpenWebTextDataset as OWT
from ReAct.model.baseline import GPT
from ReAct.model.react import React
from ReAct.utils.arg_parser import get_inference_args
from ReAct.utils.helpers import count_params, load_eqx_obj
from ReAct.utils.logger import UnifiedLogger
from ReAct.utils.sharding import get_strategy
class Inferencer:
def __init__(self, args: argparse.Namespace, key: PRNGKeyArray):
self.pad_token = 50257
self.key = key
self.args = args
dummy_dataset = OWT(split="train")
self.decode_fn = dummy_dataset.tok.decode
self.encode_fn = dummy_dataset.tok.encode
self.strategy = get_strategy(self.args.strategy)
def skeleton_model(self, is_baseline: bool) -> GPT | React:
if not is_baseline:
model = React(
n_heads=self.args.n_heads,
seqlen=self.args.seqlen,
max_iters=self.args.max_iters,
num_blocks=self.args.num_blocks,
width=self.args.width,
drop_rate=0.0,
vocab_size=self.args.num_classes,
key=self.key,
strategy=self.strategy
)
else:
model = GPT(
n_heads=self.args.n_heads,
seqlen=self.args.seqlen,
num_blocks=self.args.num_blocks,
width=self.args.width,
drop_rate=0.0,
vocab_size=self.args.num_classes,
key=self.key,
strategy=self.strategy
)
return model
def encode_input(self, my_input: str) -> Array:
encoded = self.encode_fn(my_input)['input_ids']
encoded = jnp.asarray([i for i in encoded if i != self.pad_token])
return encoded
def sample_model(
self,
model: eqx.Module,
my_input: str,
num_tokens: int = 128,
temperature: float = 0.7,
top_k: int = 50,
top_p: float = 0.9,
repetition_penalty: float = 1.2,
max_repeat_tokens: int = 3,
) -> str:
'''
Samples the model autoregressively using more advanced techniques:
- Temperature scaling
- Top-k sampling
- Nucleus (top-p) sampling
- Repetition penalty
'''
inference_model = eqx.nn.inference_mode(model)
if hasattr(self.args, "system_prompt"):
prompt = self.args.system_prompt + my_input
else:
prompt = my_input
model_input = self.encode_input(prompt)
def generate(model_input: Array, num_tokens: int) -> Array:
def sample_token(padded_array: Array):
pad_mask = jnp.where(padded_array == self.pad_token, 0, 1)
last_tok_idx = jnp.sum(pad_mask) - 1
if self.args.baseline:
logits = inference_model(padded_array, pad_mask, False, self.key)
else:
logits = inference_model(padded_array, self.args.max_iters,
pad_mask, False, False, self.key)[0]
logits = logits[last_tok_idx, :] # extract the logits for the last token
# Apply temperature
scaled_logits = logits / temperature
# Apply repetition penalty
if model_input.shape[0] > max_repeat_tokens:
recent_tokens = model_input[-max_repeat_tokens:]
scaled_logits = jax.vmap(lambda t: jnp.where(t == jnp.arange(logits.shape[0]),
scaled_logits / repetition_penalty,
scaled_logits))(recent_tokens)
scaled_logits = scaled_logits.min(axis=0)
# Top-k sampling
top_k_logits, top_k_indices = jax.lax.top_k(scaled_logits, top_k)
# Top-p (nucleus) sampling
probs = jax.nn.softmax(top_k_logits)
cumulative_probs = jnp.cumsum(probs)
nucleus = jnp.where(cumulative_probs > top_p, 0.0, probs)
nucleus = nucleus / jnp.sum(nucleus)
# Sample from the nucleus
token = jax.random.choice(self.key, top_k_indices, p=nucleus)
return token
for _ in range(num_tokens):
if model_input.shape[0] < self.args.seqlen:
padded_array = jnp.pad(
model_input,
(0, self.args.seqlen - model_input.shape[0]),
constant_values=self.pad_token,
)
else:
padded_array = model_input[-self.args.seqlen:]
gen = sample_token(padded_array)
model_input = jnp.concatenate([model_input, gen.reshape(-1)]) # append the generated token for AR
# Update PRNG key
self.key, _ = jax.random.split(self.key)
return model_input
generated_output = generate(model_input, num_tokens)
return self.decode_fn(generated_output[-num_tokens:])
def inference(self, my_input: str, num_tokens: int = 32):
model = self.skeleton_model(self.args.baseline)
assert (
model.__name__ == "GPT" if args.baseline else model.__name__ == "ReAct"
), "Trying to do inference on baseline model requires --baseline flag"
model = load_eqx_obj(self.args.checkpoint_path, model)
count_params(model)
output = self.sample_model(
model=model,
my_input=my_input,
num_tokens=num_tokens,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
repetition_penalty=args.repetition_penalty,
max_repeat_tokens=3,
)
return output
if __name__ == "__main__":
key = jax.random.PRNGKey(0)
args = get_inference_args()
logger = UnifiedLogger(args, level="DEBUG")
my_logger = logger.my_logger()
my_logger.warning('Make sure to provide the correct args per the model configuration - as it cant be autodetected!')
my_logger.warning('These are: max_iters| baseline | num_blocks | width | n_heads')
print(f"{'-'*50}\n")
assert args.checkpoint_path is not None, "Please provide a checkpoint path"
assert os.path.exists(args.checkpoint_path), "Please provide a valid checkpoint path | File does not exist"
assert args.prompt is not None, "Please provide a prompt/input for inference"
inferencer = Inferencer(args, key)
output = inferencer.inference(args.prompt, args.num_tokens)
print(f"\n{'~' * 50}\n")
my_logger.info(f'System Prompt: {args.system_prompt}\n')
my_logger.info(f'User Prompt: {args.prompt}\n')
my_logger.info(f'Model Response: {output}\n')
print(f"\n{'~' * 50}\n")