|
| 1 | +from collections import defaultdict |
| 2 | +import math |
| 3 | +import numpy as np |
| 4 | +import time |
| 5 | +import random |
| 6 | +import torch |
| 7 | +import torch.nn.functional as F |
| 8 | + |
| 9 | + |
| 10 | +class WordEmbSkip(torch.nn.Module): |
| 11 | + def __init__(self, nwords, emb_size): |
| 12 | + super(WordEmbSkip, self).__init__() |
| 13 | + |
| 14 | + """ word embeddings """ |
| 15 | + self.word_embedding = torch.nn.Embedding(nwords, emb_size, sparse=True) |
| 16 | + # initialize the weights with xavier uniform (Glorot, X. & Bengio, Y. (2010)) |
| 17 | + torch.nn.init.xavier_uniform_(self.word_embedding.weight) |
| 18 | + """ context embeddings""" |
| 19 | + self.context_embedding = torch.nn.Embedding(nwords, emb_size, sparse=True) |
| 20 | + # initialize the weights with xavier uniform (Glorot, X. & Bengio, Y. (2010)) |
| 21 | + torch.nn.init.xavier_uniform_(self.context_embedding.weight) |
| 22 | + |
| 23 | + # useful ref: https://arxiv.org/abs/1402.3722 |
| 24 | + def forward(self, word_pos, context_positions, negative_sample=False): |
| 25 | + embed_word = self.word_embedding(word_pos) # 1 * emb_size |
| 26 | + embed_context = self.context_embedding(context_positions) # n * emb_size |
| 27 | + score = torch.matmul(embed_context, embed_word.transpose(dim0=1, dim1=0)) #score = n * 1 |
| 28 | + |
| 29 | + # following is an example of something you can only do in a framework that allows |
| 30 | + # dynamic graph creation |
| 31 | + if negative_sample: |
| 32 | + score = -1*score |
| 33 | + obj = -1 * torch.sum(F.logsigmoid(score)) |
| 34 | + return obj |
| 35 | + |
| 36 | +K=3 #number of negative samples |
| 37 | +N=2 #length of window on each side (so N=2 gives a total window size of 5, as in t-2 t-1 t t+1 t+2) |
| 38 | +EMB_SIZE = 128 # The size of the embedding |
| 39 | + |
| 40 | +embeddings_location = "embeddings.txt" #the file to write the word embeddings to |
| 41 | +labels_location = "labels.txt" #the file to write the labels to |
| 42 | + |
| 43 | +# We reuse the data reading from the language modeling class |
| 44 | +w2i = defaultdict(lambda: len(w2i)) |
| 45 | + |
| 46 | +#word counts for negative sampling |
| 47 | +word_counts = defaultdict(int) |
| 48 | + |
| 49 | +S = w2i["<s>"] |
| 50 | +UNK = w2i["<unk>"] |
| 51 | +def read_dataset(filename): |
| 52 | + with open(filename, "r") as f: |
| 53 | + for line in f: |
| 54 | + line = line.strip().split(" ") |
| 55 | + for word in line: |
| 56 | + word_counts[w2i[word]] += 1 |
| 57 | + yield [w2i[x] for x in line] |
| 58 | + |
| 59 | + |
| 60 | +# Read in the data |
| 61 | +train = list(read_dataset("../data/ptb/train.txt")) |
| 62 | +w2i = defaultdict(lambda: UNK, w2i) |
| 63 | +dev = list(read_dataset("../data/ptb/valid.txt")) |
| 64 | +i2w = {v: k for k, v in w2i.items()} |
| 65 | +nwords = len(w2i) |
| 66 | + |
| 67 | + |
| 68 | +# take the word counts to the 3/4, normalize |
| 69 | +counts = np.array([list(x) for x in word_counts.items()])[:,1]**.75 |
| 70 | +normalizing_constant = sum(counts) |
| 71 | +word_probabilities = np.zeros(nwords) |
| 72 | +for word_id in word_counts: |
| 73 | + word_probabilities[word_id] = word_counts[word_id]**.75/normalizing_constant |
| 74 | + |
| 75 | +with open(labels_location, 'w') as labels_file: |
| 76 | + for i in range(nwords): |
| 77 | + labels_file.write(i2w[i] + '\n') |
| 78 | + |
| 79 | +# initialize the model |
| 80 | +model = WordEmbSkip(nwords, EMB_SIZE) |
| 81 | +optimizer = torch.optim.SGD(model.parameters(), lr=0.1) |
| 82 | + |
| 83 | +type = torch.LongTensor |
| 84 | +use_cuda = torch.cuda.is_available() |
| 85 | + |
| 86 | +if use_cuda: |
| 87 | + type = torch.cuda.LongTensor |
| 88 | + model.cuda() |
| 89 | + |
| 90 | + |
| 91 | +# Calculate the loss value for the entire sentence |
| 92 | +def calc_sent_loss(sent): |
| 93 | + # add padding to the sentence equal to the size of the window |
| 94 | + # as we need to predict the eos as well, the future window at that point is N past it |
| 95 | + all_neg_words = np.random.choice(nwords, size=2*N*K*len(sent), replace=True, p=word_probabilities) |
| 96 | + |
| 97 | + # Step through the sentence |
| 98 | + losses = [] |
| 99 | + for i, word in enumerate(sent): |
| 100 | + pos_words = [sent[x] if x >= 0 else S for x in range(i-N,i)] + \ |
| 101 | + [sent[x] if x < len(sent) else S for x in range(i+1,i+N+1)] |
| 102 | + pos_words_tensor = torch.tensor(pos_words).type(type) |
| 103 | + neg_words = all_neg_words[i*K*2*N:(i+1)*K*2*N] |
| 104 | + neg_words_tensor = torch.tensor(neg_words).type(type) |
| 105 | + target_word_tensor = torch.tensor([word]).type(type) |
| 106 | + |
| 107 | + #NOTE: technically, one should ensure that the neg words don't contain the |
| 108 | + # the context (i.e. positive) words, but it is very unlikely, so we can ignore that |
| 109 | + |
| 110 | + pos_loss = model(target_word_tensor, pos_words_tensor) |
| 111 | + neg_loss = model(target_word_tensor, neg_words_tensor, negative_sample=True) |
| 112 | + |
| 113 | + losses.append(pos_loss + neg_loss) |
| 114 | + |
| 115 | + return torch.stack(losses).sum() |
| 116 | + |
| 117 | + |
| 118 | +MAX_LEN = 100 |
| 119 | + |
| 120 | +for ITER in range(100): |
| 121 | + print("started iter %r" % ITER) |
| 122 | + # Perform training |
| 123 | + random.shuffle(train) |
| 124 | + train_words, train_loss = 0, 0.0 |
| 125 | + start = time.time() |
| 126 | + model.train() |
| 127 | + for sent_id, sent in enumerate(train): |
| 128 | + my_loss = calc_sent_loss(sent) |
| 129 | + train_loss += my_loss.item() |
| 130 | + train_words += len(sent) |
| 131 | + # Back prop while training |
| 132 | + optimizer.zero_grad() |
| 133 | + my_loss.backward() |
| 134 | + optimizer.step() |
| 135 | + if (sent_id + 1) % 50 == 0: |
| 136 | + print("--finished %r sentences" % (sent_id + 1)) |
| 137 | + train_ppl = float('inf') if train_loss / train_words > 709 else math.exp(train_loss / train_words) |
| 138 | + print("after sentences %r: train loss/word=%.4f, ppl=%.4f, time=%.2fs" % ( |
| 139 | + sent_id + 1, train_loss / train_words, train_ppl, time.time() - start)) |
| 140 | + train_ppl = float('inf') if train_loss / train_words > 709 else math.exp(train_loss / train_words) |
| 141 | + print("iter %r: train loss/word=%.4f, ppl=%.4f, time=%.2fs" % ( |
| 142 | + ITER, train_loss / train_words, train_ppl, time.time() - start)) |
| 143 | + # Evaluate on dev set |
| 144 | + dev_words, dev_loss = 0, 0.0 |
| 145 | + start = time.time() |
| 146 | + model.eval() |
| 147 | + for sent_id, sent in enumerate(dev): |
| 148 | + my_loss = calc_sent_loss(sent) |
| 149 | + dev_loss += my_loss.item() |
| 150 | + dev_words += len(sent) |
| 151 | + dev_ppl = float('inf') if dev_loss / dev_words > 709 else math.exp(dev_loss / dev_words) |
| 152 | + print("iter %r: dev loss/word=%.4f, ppl=%.4f, time=%.2fs" % ( |
| 153 | + ITER, dev_loss / dev_words, dev_ppl, time.time() - start)) |
| 154 | + |
| 155 | + print("saving embedding files") |
| 156 | + with open(embeddings_location, 'w') as embeddings_file: |
| 157 | + W_w_np = model.word_embedding.weight.data.cpu().numpy() |
| 158 | + for i in range(nwords): |
| 159 | + ith_embedding = '\t'.join(map(str, W_w_np[i])) |
| 160 | + embeddings_file.write(ith_embedding + '\n') |
0 commit comments