|
| 1 | +--- |
| 2 | +{ |
| 3 | + "name": "DAVIS-RS-EVENT", |
| 4 | + "aliases": [ |
| 5 | + "DRE" |
| 6 | + ], |
| 7 | + "year": 2025, |
| 8 | + "modalities": [ |
| 9 | + "Vision" |
| 10 | + ], |
| 11 | + "sensors": [ |
| 12 | + "DAVIS346" |
| 13 | + ], |
| 14 | + "other_sensors": [], |
| 15 | + "category": "Intensity Reconstruction, Optical Flow, and Frame Fusion", |
| 16 | + "tags": [ |
| 17 | + "Shutter Unrolling" |
| 18 | + ], |
| 19 | + "description": "Event-based Shutter Unrolling Dataset", |
| 20 | + "dataset_properties": { |
| 21 | + "available_online": true, |
| 22 | + "has_real_data": true, |
| 23 | + "has_simulated_data": false, |
| 24 | + "has_ground_truth": false, |
| 25 | + "has_frames": true, |
| 26 | + "has_biases": false, |
| 27 | + "distribution_methods": [ |
| 28 | + "Google Drive" |
| 29 | + ], |
| 30 | + "file_formats": [ |
| 31 | + "HDF5" |
| 32 | + ], |
| 33 | + "availability_comment": "", |
| 34 | + "dataset_links": [ |
| 35 | + { |
| 36 | + "name": "Google Drive", |
| 37 | + "url": "https://drive.google.com/drive/folders/1GhUP-dJIQbutI3uipeuGPMJmfA2u-ACR", |
| 38 | + "format": "HDF5", |
| 39 | + "available": true |
| 40 | + } |
| 41 | + ], |
| 42 | + "size_gb": 9.5, |
| 43 | + "size_type": "Compressed" |
| 44 | + }, |
| 45 | + "paper": { |
| 46 | + "title": "Self-supervised Shutter Unrolling with Events", |
| 47 | + "doi": "10.1007/s11263-025-02364-z", |
| 48 | + "authors": [ |
| 49 | + "Mingyuan Lin", |
| 50 | + "Yangguang Wang", |
| 51 | + "Xiang Zhang", |
| 52 | + "Boxin Shi", |
| 53 | + "Wen Yang", |
| 54 | + "Chu He", |
| 55 | + "Gui-song Xia", |
| 56 | + "Lei Yu" |
| 57 | + ], |
| 58 | + "abstract": "Continuous-time Global Shutter Video Recovery (CGVR) faces a substantial challenge in recovering undistorted high frame-rate Global Shutter (GS) videos from distorted Rolling Shutter (RS) images. This problem is severely ill-posed due to the absence of temporal dynamic information within RS intra-frame scanlines and inter-frame exposures, particularly when prior knowledge about camera/object motions is unavailable. Commonly used artificial assumptions on scenes/motions and data-specific characteristics are prone to producing sub-optimal solutions in real-world scenarios. To address this challenge, we propose an event-based CGVR network within a self-supervised learning paradigm, i.e., SelfUnroll, and leverage the extremely high temporal resolution of event cameras to provide accurate inter/intra-frame dynamic information. Specifically, an Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals, including the temporal transition and spatial translation. Exploring connections in terms of RS-RS, RS-GS, and GS-RS, we explicitly formulate mutual constraints with the proposed E-IC, resulting in supervisions without ground-truth GS images. Extensive evaluations over synthetic and real datasets demonstrate that the proposed method achieves state-of-the-art methods and shows remarkable performance for event-based RS2GS inversion in real-world scenarios. The dataset and code are available at https://w3un.github.io/selfunroll/.", |
| 59 | + "open_access": false |
| 60 | + }, |
| 61 | + "citation_counts": [ |
| 62 | + { |
| 63 | + "source": "crossref", |
| 64 | + "count": 0, |
| 65 | + "updated": "2025-09-12T16:25:21.707888" |
| 66 | + }, |
| 67 | + { |
| 68 | + "source": "scholar", |
| 69 | + "count": 1, |
| 70 | + "updated": "2025-09-12T16:25:23.257051" |
| 71 | + } |
| 72 | + ], |
| 73 | + "links": [ |
| 74 | + { |
| 75 | + "type": "project_page", |
| 76 | + "url": "https://w3un.github.io/selfunroll/" |
| 77 | + }, |
| 78 | + { |
| 79 | + "type": "github_page", |
| 80 | + "url": "https://github.com/w3un/selfunroll_code" |
| 81 | + } |
| 82 | + ], |
| 83 | + "full_name": "", |
| 84 | + "additional_metadata": { |
| 85 | + "num_recordings": "100" |
| 86 | + }, |
| 87 | + "referenced_papers": [ |
| 88 | + { |
| 89 | + "doi": "10.1109/CVPR42600.2020.00258", |
| 90 | + "source": "crossref" |
| 91 | + }, |
| 92 | + { |
| 93 | + "doi": "10.1109/CVPR.2010.5539932", |
| 94 | + "source": "crossref" |
| 95 | + }, |
| 96 | + { |
| 97 | + "doi": "10.1109/CVPR.2019.00382", |
| 98 | + "source": "crossref" |
| 99 | + }, |
| 100 | + { |
| 101 | + "doi": "10.1109/TPAMI.2019.2941941", |
| 102 | + "source": "crossref" |
| 103 | + }, |
| 104 | + { |
| 105 | + "doi": "10.1109/JSSC.2014.2342715", |
| 106 | + "source": "crossref" |
| 107 | + }, |
| 108 | + { |
| 109 | + "doi": "10.1109/ICCV51070.2023.01148", |
| 110 | + "source": "crossref" |
| 111 | + }, |
| 112 | + { |
| 113 | + "doi": "10.36227/techrxiv.21300960.v1", |
| 114 | + "source": "crossref" |
| 115 | + }, |
| 116 | + { |
| 117 | + "doi": "10.1109/CVPR52729.2023.01336", |
| 118 | + "source": "crossref" |
| 119 | + }, |
| 120 | + { |
| 121 | + "doi": "10.1109/ICCV48922.2021.00419", |
| 122 | + "source": "crossref" |
| 123 | + }, |
| 124 | + { |
| 125 | + "doi": "10.1109/ICCV48922.2021.00450", |
| 126 | + "source": "crossref" |
| 127 | + }, |
| 128 | + { |
| 129 | + "doi": "10.1109/CVPR52688.2022.01705", |
| 130 | + "source": "crossref" |
| 131 | + }, |
| 132 | + { |
| 133 | + "doi": "10.1145/358669.358692", |
| 134 | + "source": "crossref" |
| 135 | + }, |
| 136 | + { |
| 137 | + "doi": "10.1109/ICCPhot.2012.6215213", |
| 138 | + "source": "crossref" |
| 139 | + }, |
| 140 | + { |
| 141 | + "doi": "10.1109/CVPR52688.2022.01728", |
| 142 | + "source": "crossref" |
| 143 | + }, |
| 144 | + { |
| 145 | + "doi": "10.1109/CVPR.2018.00938", |
| 146 | + "source": "crossref" |
| 147 | + }, |
| 148 | + { |
| 149 | + "doi": "10.1109/CVPR.2019.00830", |
| 150 | + "source": "crossref" |
| 151 | + }, |
| 152 | + { |
| 153 | + "doi": "10.1109/CVPR.2018.00504", |
| 154 | + "source": "crossref" |
| 155 | + }, |
| 156 | + { |
| 157 | + "doi": "10.1109/CVPR52729.2023.00406", |
| 158 | + "source": "crossref" |
| 159 | + }, |
| 160 | + { |
| 161 | + "doi": "10.1109/JSSC.2007.914337", |
| 162 | + "source": "crossref" |
| 163 | + }, |
| 164 | + { |
| 165 | + "doi": "10.1007/978-3-030-58598-3_41", |
| 166 | + "source": "crossref" |
| 167 | + }, |
| 168 | + { |
| 169 | + "doi": "10.1109/CVPR42600.2020.00598", |
| 170 | + "source": "crossref" |
| 171 | + }, |
| 172 | + { |
| 173 | + "doi": "10.1109/ICCV.2017.478", |
| 174 | + "source": "crossref" |
| 175 | + }, |
| 176 | + { |
| 177 | + "doi": "10.1109/CVPR.2017.244", |
| 178 | + "source": "crossref" |
| 179 | + }, |
| 180 | + { |
| 181 | + "doi": "10.1109/ICCV.2017.37", |
| 182 | + "source": "crossref" |
| 183 | + }, |
| 184 | + { |
| 185 | + "doi": "10.1007/978-3-031-72952-2_10", |
| 186 | + "source": "crossref" |
| 187 | + }, |
| 188 | + { |
| 189 | + "doi": "10.1109/CVPR.2013.179", |
| 190 | + "source": "crossref" |
| 191 | + }, |
| 192 | + { |
| 193 | + "doi": "10.1109/CVPR.2019.00698", |
| 194 | + "source": "crossref" |
| 195 | + }, |
| 196 | + { |
| 197 | + "doi": "10.1109/WACV.2018.00104", |
| 198 | + "source": "crossref" |
| 199 | + }, |
| 200 | + { |
| 201 | + "doi": "10.1109/ICCV.2017.101", |
| 202 | + "source": "crossref" |
| 203 | + }, |
| 204 | + { |
| 205 | + "doi": "10.1109/ICCV.2019.00098", |
| 206 | + "source": "crossref" |
| 207 | + }, |
| 208 | + { |
| 209 | + "doi": "10.1109/CVPR.2016.303", |
| 210 | + "source": "crossref" |
| 211 | + }, |
| 212 | + { |
| 213 | + "doi": "10.1109/CVPR.2017.252", |
| 214 | + "source": "crossref" |
| 215 | + }, |
| 216 | + { |
| 217 | + "doi": "10.1007/978-3-319-24574-4_28", |
| 218 | + "source": "crossref" |
| 219 | + }, |
| 220 | + { |
| 221 | + "doi": "10.1109/CVPR.2016.445", |
| 222 | + "source": "crossref" |
| 223 | + }, |
| 224 | + { |
| 225 | + "doi": "10.1109/CVPR52688.2022.01584", |
| 226 | + "source": "crossref" |
| 227 | + }, |
| 228 | + { |
| 229 | + "doi": "10.1109/CVPR.2018.00931", |
| 230 | + "source": "crossref" |
| 231 | + }, |
| 232 | + { |
| 233 | + "doi": "10.1109/CVPR46437.2021.01589", |
| 234 | + "source": "crossref" |
| 235 | + }, |
| 236 | + { |
| 237 | + "doi": "10.1109/CVPR52688.2022.01723", |
| 238 | + "source": "crossref" |
| 239 | + }, |
| 240 | + { |
| 241 | + "doi": "10.1007/978-3-030-58601-0_10", |
| 242 | + "source": "crossref" |
| 243 | + }, |
| 244 | + { |
| 245 | + "doi": "10.1109/ICCV48922.2021.00258", |
| 246 | + "source": "crossref" |
| 247 | + }, |
| 248 | + { |
| 249 | + "doi": "10.1007/978-3-031-20071-7_5", |
| 250 | + "source": "crossref" |
| 251 | + }, |
| 252 | + { |
| 253 | + "doi": "10.1109/CVPR52688.2022.01724", |
| 254 | + "source": "crossref" |
| 255 | + }, |
| 256 | + { |
| 257 | + "doi": "10.1016/j.cviu.2024.104094", |
| 258 | + "source": "crossref" |
| 259 | + }, |
| 260 | + { |
| 261 | + "doi": "10.1109/CVPR46437.2021.00910", |
| 262 | + "source": "crossref" |
| 263 | + }, |
| 264 | + { |
| 265 | + "doi": "10.1007/978-3-031-20071-7_14", |
| 266 | + "source": "crossref" |
| 267 | + }, |
| 268 | + { |
| 269 | + "doi": "10.1109/CVPR52688.2022.01725", |
| 270 | + "source": "crossref" |
| 271 | + }, |
| 272 | + { |
| 273 | + "doi": "10.15607/RSS.2018.XIV.062", |
| 274 | + "source": "crossref" |
| 275 | + }, |
| 276 | + { |
| 277 | + "doi": "10.1109/ICCV.2017.244", |
| 278 | + "source": "crossref" |
| 279 | + }, |
| 280 | + { |
| 281 | + "doi": "10.1109/ICCV.2017.108", |
| 282 | + "source": "crossref" |
| 283 | + }, |
| 284 | + { |
| 285 | + "doi": "10.1109/CVPR.2019.00468", |
| 286 | + "source": "crossref" |
| 287 | + } |
| 288 | + ], |
| 289 | + "bibtex": { |
| 290 | + "pages": "3762\u20133780", |
| 291 | + "month": "jan", |
| 292 | + "year": 2025, |
| 293 | + "author": "Lin, Mingyuan and Wang, Yangguang and Zhang, Xiang and Shi, Boxin and Yang, Wen and He, Chu and Xia, Gui-song and Yu, Lei", |
| 294 | + "publisher": "Springer Science and Business Media LLC", |
| 295 | + "journal": "International Journal of Computer Vision", |
| 296 | + "number": "6", |
| 297 | + "doi": "10.1007/s11263-025-02364-z", |
| 298 | + "url": "http://dx.doi.org/10.1007/s11263-025-02364-z", |
| 299 | + "issn": "1573-1405", |
| 300 | + "volume": "133", |
| 301 | + "title": "Self-supervised Shutter Unrolling with Events", |
| 302 | + "type": "article", |
| 303 | + "key": "Lin_2025" |
| 304 | + } |
| 305 | +} |
| 306 | +--- |
| 307 | + |
| 308 | +# Dataset Details |
0 commit comments