|
| 1 | +--- |
| 2 | +{ |
| 3 | + "name": "APEIRON", |
| 4 | + "aliases": [], |
| 5 | + "year": 2024, |
| 6 | + "modalities": [ |
| 7 | + "Vision" |
| 8 | + ], |
| 9 | + "sensors": [ |
| 10 | + "Prophesee Gen4" |
| 11 | + ], |
| 12 | + "other_sensors": [ |
| 13 | + "Stereolabs ZED2i", |
| 14 | + "PixHawk 2.4.8" |
| 15 | + ], |
| 16 | + "category": "Robotic and Moving Vehicle Datasets", |
| 17 | + "tags": [ |
| 18 | + "Flying Datasets", |
| 19 | + "Drone Detection" |
| 20 | + ], |
| 21 | + "description": "Multimodal aerial dataset with Wireless Signals", |
| 22 | + "dataset_properties": { |
| 23 | + "available_online": true, |
| 24 | + "has_real_data": true, |
| 25 | + "has_simulated_data": false, |
| 26 | + "has_ground_truth": true, |
| 27 | + "has_frames": true, |
| 28 | + "has_biases": true, |
| 29 | + "distribution_methods": [ |
| 30 | + "Direct Download" |
| 31 | + ], |
| 32 | + "file_formats": [ |
| 33 | + "Binary" |
| 34 | + ], |
| 35 | + "availability_comment": "", |
| 36 | + "dataset_links": [ |
| 37 | + { |
| 38 | + "name": "Direct Download", |
| 39 | + "url": "https://c3lab.github.io/Apeiron/", |
| 40 | + "format": "Binary", |
| 41 | + "available": true |
| 42 | + } |
| 43 | + ], |
| 44 | + "size_gb": 34.2, |
| 45 | + "size_type": "Compressed" |
| 46 | + }, |
| 47 | + "paper": { |
| 48 | + "title": "APEIRON", |
| 49 | + "doi": "10.1145/3625468.3652186", |
| 50 | + "authors": [ |
| 51 | + "Nunzio Barone", |
| 52 | + "Walter Brescia", |
| 53 | + "Saverio Mascolo", |
| 54 | + "Luca De Cicco" |
| 55 | + ], |
| 56 | + "abstract": "Unmanned Aerial Vehicles (UAVs), commonly denoted as drones, are being increasingly adopted as platforms to enable applications such as surveillance, disaster response, environmental monitoring, live drone broadcasting, and Internet-of-Drones (IoD). In this context, drone systems are required to carry out tasks autonomously in potentially unknown and challenging environments. As such, deep learning algorithms are widely adopted to implement efficient perception from sensors, making the availability of comprehensive datasets capturing real-world environments important. In this work, we introduce APEIRON, a rich multimodal aerial dataset that simultaneously collects perception data from a stereocamera and an event based camera sensor, along with measurements of wireless network links obtained using an LTE module. The assembled dataset consists of both perception and network data, making it suitable for typical perception or communication applications, as well as cross-disciplinary applications that require both types of data. We believe that this dataset will help promoting multi-disciplinary research at the intersection of multimedia systems, computer networks, and robotics fields. APEIRON is available at https://c3lab.github.io/Apeiron/.", |
| 57 | + "open_access": true |
| 58 | + }, |
| 59 | + "citation_counts": [ |
| 60 | + { |
| 61 | + "source": "crossref", |
| 62 | + "count": 2, |
| 63 | + "updated": "2025-09-13T15:43:31.596979" |
| 64 | + } |
| 65 | + ], |
| 66 | + "links": [ |
| 67 | + { |
| 68 | + "type": "paper", |
| 69 | + "url": "https://dl.acm.org/doi/abs/10.1145/3625468.3652186" |
| 70 | + }, |
| 71 | + { |
| 72 | + "type": "github_page", |
| 73 | + "url": "https://github.com/c3lab/Apeiron" |
| 74 | + } |
| 75 | + ], |
| 76 | + "full_name": "", |
| 77 | + "additional_metadata": {}, |
| 78 | + "referenced_papers": [ |
| 79 | + { |
| 80 | + "doi": "10.1016/j.petrol.2021.109633", |
| 81 | + "source": "crossref" |
| 82 | + }, |
| 83 | + { |
| 84 | + "doi": "10.1109/ICRA.2019.8793887", |
| 85 | + "source": "crossref" |
| 86 | + }, |
| 87 | + { |
| 88 | + "doi": "10.1145/3522784.3522786", |
| 89 | + "source": "crossref" |
| 90 | + }, |
| 91 | + { |
| 92 | + "doi": "10.1109/TVT.2023.3318641", |
| 93 | + "source": "crossref" |
| 94 | + }, |
| 95 | + { |
| 96 | + "doi": "10.1109/TPAMI.2020.3008413", |
| 97 | + "source": "crossref" |
| 98 | + }, |
| 99 | + { |
| 100 | + "doi": "10.1109/ACCESS.2016.2537208", |
| 101 | + "source": "crossref" |
| 102 | + }, |
| 103 | + { |
| 104 | + "doi": "10.1145/3083187.3083214", |
| 105 | + "source": "crossref" |
| 106 | + }, |
| 107 | + { |
| 108 | + "doi": "10.1109/TASE.2020.3016276", |
| 109 | + "source": "crossref" |
| 110 | + }, |
| 111 | + { |
| 112 | + "doi": "10.1109/ACCESS.2022.3220694", |
| 113 | + "source": "crossref" |
| 114 | + }, |
| 115 | + { |
| 116 | + "doi": "10.1109/MCOM.005.2200784", |
| 117 | + "source": "crossref" |
| 118 | + }, |
| 119 | + { |
| 120 | + "doi": "10.1109/ICUAS57906.2023.10156376", |
| 121 | + "source": "crossref" |
| 122 | + }, |
| 123 | + { |
| 124 | + "doi": "10.1109/ICCCN52240.2021.9522344", |
| 125 | + "source": "crossref" |
| 126 | + }, |
| 127 | + { |
| 128 | + "doi": "10.1109/TVT.2021.3126229", |
| 129 | + "source": "crossref" |
| 130 | + }, |
| 131 | + { |
| 132 | + "doi": "10.1016/j.comcom.2020.03.012", |
| 133 | + "source": "crossref" |
| 134 | + }, |
| 135 | + { |
| 136 | + "doi": "10.1109/JIOT.2022.3184323", |
| 137 | + "source": "crossref" |
| 138 | + }, |
| 139 | + { |
| 140 | + "doi": "10.1109/VTCSpring.2019.8746290", |
| 141 | + "source": "crossref" |
| 142 | + }, |
| 143 | + { |
| 144 | + "doi": "10.1109/MRA.2011.943233", |
| 145 | + "source": "crossref" |
| 146 | + }, |
| 147 | + { |
| 148 | + "doi": "10.1109/ICDCS.2017.200", |
| 149 | + "source": "crossref" |
| 150 | + }, |
| 151 | + { |
| 152 | + "title": "Cooperative Exploration of Heterogeneous UAVs in Mountainous Environments by Constructing Steady Communication", |
| 153 | + "source": "crossref" |
| 154 | + } |
| 155 | + ], |
| 156 | + "bibtex": { |
| 157 | + "collection": "MMSys \u201924", |
| 158 | + "pages": "401\u2013407", |
| 159 | + "month": "apr", |
| 160 | + "year": 2024, |
| 161 | + "author": "Barone, Nunzio and Brescia, Walter and Mascolo, Saverio and De Cicco, Luca", |
| 162 | + "publisher": "ACM", |
| 163 | + "booktitle": "Proceedings of the ACM Multimedia Systems Conference 2024 on ZZZ", |
| 164 | + "doi": "10.1145/3625468.3652186", |
| 165 | + "url": "http://dx.doi.org/10.1145/3625468.3652186", |
| 166 | + "title": "APEIRON: a Multimodal Drone Dataset Bridging Perception and Network Data in Outdoor Environments", |
| 167 | + "series": "MMSys \u201924", |
| 168 | + "type": "inproceedings", |
| 169 | + "key": "Barone_2024" |
| 170 | + } |
| 171 | +} |
| 172 | +--- |
| 173 | + |
| 174 | +# Dataset Description |
| 175 | + |
| 176 | +APEIRON is a rich multimodal aerial dataset that simultaneously collects perception data from a stereocamera and an event based camera sensor, along with measurements of wireless network links obtained using an LTE module. The assembled dataset consists of both perception and network data, making it suitable for typical perception or communication applications, as well as cross-disciplinary applications that require both types of data. |
0 commit comments