|
22 | 22 | ############################################################################### |
23 | 23 | # Datasets can be created from arrays |
24 | 24 | # ----------------------------------- |
| 25 | +# The simplest way to create a dataset is to pass in arguments as numpy arrays. |
| 26 | +# |
| 27 | +# ``y`` refers to the study-level estimates, ``v`` to the variances, |
| 28 | +# ``X`` to any study-level regressors, and ``n`` to the sample sizes. |
| 29 | +# |
| 30 | +# Not all Estimators require all of these arguments, so not all need to be |
| 31 | +# used in a given Dataset. |
| 32 | +y = [2, 4, 6] |
25 | 33 | v = [100, 100, 100] |
26 | 34 | X = [[5, 9], [2, 8], [1, 7]] |
27 | | -y = [2, 4, 6] |
28 | | -dataset = core.Dataset(y=y, v=v, X=X) |
| 35 | + |
| 36 | +dataset = core.Dataset(y=y, v=v, X=X, X_names=["X1", "X7"]) |
| 37 | + |
| 38 | +pprint(vars(dataset)) |
| 39 | + |
| 40 | +############################################################################### |
| 41 | +# Datasets have the :meth:`~pymare.core.Dataset.to_df` method. |
| 42 | +dataset.to_df() |
29 | 43 |
|
30 | 44 | ############################################################################### |
31 | 45 | # Datasets can also be created from pandas DataFrames |
|
38 | 52 | "X7": [9, 8, 7], |
39 | 53 | } |
40 | 54 | ) |
| 55 | + |
41 | 56 | dataset = core.Dataset(v="v_alt", X=["X1", "X7"], data=df, add_intercept=False) |
42 | 57 |
|
43 | 58 | pprint(vars(dataset)) |
| 59 | + |
| 60 | +############################################################################### |
| 61 | +# Datasets can also contain multiple dependent variables |
| 62 | +# ------------------------------------------------------ |
| 63 | +# These variables are analyzed in parallel, but as unrelated variables, |
| 64 | +# rather than as potentially correlated ones. |
| 65 | +# |
| 66 | +# This is particularly useful for image-based neuroimaging meta-analyses. |
| 67 | +# For more information about this, see `NiMARE <https://nimare.readthedocs.io>`_. |
| 68 | +y = [ |
| 69 | + [2, 4, 6], # Estimates for first study's three outcome variables. |
| 70 | + [3, 2, 1], # Estimates for second study's three outcome variables. |
| 71 | +] |
| 72 | +v = [ |
| 73 | + [100, 100, 100], # Estimate variances for first study's three outcome variables. |
| 74 | + [8, 4, 2], # Estimate variances for second study's three outcome variables. |
| 75 | +] |
| 76 | +X = [ |
| 77 | + [5, 9], # Predictors for first study. Same across all three outcome variables. |
| 78 | + [2, 8], # Predictors for second study. Same across all three outcome variables. |
| 79 | +] |
| 80 | + |
| 81 | +dataset = core.Dataset(y=y, v=v, X=X, X_names=["X1", "X7"]) |
| 82 | + |
| 83 | +pprint(vars(dataset)) |
0 commit comments