@@ -60,21 +60,21 @@ FROM Metric
60
60
WHERE appId = $APP_ID AND metricTimesliceName = ' HttpDispatcher'
61
61
```
62
62
63
- | Valor (RPM) | Función NRQL | | -------------------------- | ------------------------------------------------------------------------------------------------- | | `average_response_time` | `average(newrelic.timeslice.value) * 1000` | | `calls_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `call_count` | `count(newrelic.timeslice.value)` | | `min_response_time` | `min(newrelic.timeslice.value) * 1000` | | `max_response_time` | `max(newrelic.timeslice.value) * 1000` | | `average_exclusive_time` | `average(newrelic.timeslice.value['totalExclusive'] / newrelic.timeslice.value['count']) * 1000` | | `average_value` | `average(newrelic.timeslice.value)` | | `total_call_time_per_minute` | `rate(sum(newrelic.timeslice.value), 1 minute)` | | `requests_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `standard_deviation` | `stddev(newrelic.timeslice.value) * 1000` | | `average_time` | `average(newrelic.timeslice.value) * 1000` | | `count` | `count(newrelic.timeslice.value)` | | `used_bytes_by_host` | `average(newrelic.timeslice.value) * 1024 * 1024` | | `used_mb_by_host` | `average(newrelic.timeslice.value)` | | `total_used_mb` | `sum(newrelic.timeslice.value)` | | `average_call_time` | `average(newrelic.timeslice.value) * 1000` | | `total_value` | `sum(newrelic.timeslice.value)` | | `min_value` | `min(newrelic.timeslice.value)` | | `max_value` | `max(newrelic.timeslice.value)` | | `rate` | `rate(sum(newrelic.timeslice.value), 1 second)` | | `throughput` | `rate(count(newrelic.timeslice.value), 1 second)` | | `as_percentage` | `average(newrelic.timeslice.value) * 100` | | `errors_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `error_count` | `count(newrelic.timeslice.value)` | | `total_time` | `sum(newrelic.timeslice.value) * 1000` | | `sessions_active` | `average(newrelic.timeslice.value)` | | `total_visits` | `sum(newrelic.timeslice.value)` | | `percent` | `average(newrelic.timeslice.value) * 100` | | `percent(CPU/User Time)` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `time_percentage` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `utilization` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `visits_percentage` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` |
63
+ \| Valor (RPM) | Función NRQL | | -------------------------- | ------------------------------------------------------------------------------------------------- | | `average_response_time` | `average(newrelic.timeslice.value) * 1000` | | `calls_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `call_count` | `count(newrelic.timeslice.value)` | | `min_response_time` | `min(newrelic.timeslice.value) * 1000` | | `max_response_time` | `max(newrelic.timeslice.value) * 1000` | | `average_exclusive_time` | `average(newrelic.timeslice.value['totalExclusive'] / newrelic.timeslice.value['count']) * 1000` | | `average_value` | `average(newrelic.timeslice.value)` | | `total_call_time_per_minute` | `rate(sum(newrelic.timeslice.value), 1 minute)` | | `requests_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `standard_deviation` | `stddev(newrelic.timeslice.value) * 1000` | | `average_time` | `average(newrelic.timeslice.value) * 1000` | | `count` | `count(newrelic.timeslice.value)` | | `used_bytes_by_host` | `average(newrelic.timeslice.value) * 1024 * 1024` | | `used_mb_by_host` | `average(newrelic.timeslice.value)` | | `total_used_mb` | `sum(newrelic.timeslice.value)` | | `average_call_time` | `average(newrelic.timeslice.value) * 1000` | | `total_value` | `sum(newrelic.timeslice.value)` | | `min_value` | `min(newrelic.timeslice.value)` | | `max_value` | `max(newrelic.timeslice.value)` | | `rate` | `rate(sum(newrelic.timeslice.value), 1 second)` | | `throughput` | `rate(count(newrelic.timeslice.value), 1 second)` | | `as_percentage` | `average(newrelic.timeslice.value) * 100` | | `errors_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `error_count` | `count(newrelic.timeslice.value)` | | `total_time` | `sum(newrelic.timeslice.value) * 1000` | | `sessions_active` | `average(newrelic.timeslice.value)` | | `total_visits` | `sum(newrelic.timeslice.value)` | | `percent` | `average(newrelic.timeslice.value) * 100` | | `percent(CPU/User Time)` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `time_percentage` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `utilization` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `visits_percentage` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` |
64
64
65
65
Si la función incluye ` $TIME_WINDOW_IN_SECONDS ` , significa que debes reemplazarla con la ventana de tiempo que deseas consultar.
66
66
67
67
Por ejemplo, si consulta un intervalo de tiempo de 30 minutos, reemplazará ` $TIME_WINDOW_IN_SECONDS ` por ` 1800 ` .
68
68
69
69
### Apdex métricas
70
70
71
- | Valor (RPM) | Función NRQL | | ------------- | ---------------------------------------------------------------------------------- | | ` score ` | ` apdex(newrelic.timeslice.value) ` | | ` s ` | ` apdex(newrelic.timeslice.value) ` o ` count(newrelic.timeslice.value) ` | | ` t ` | ` apdex(newrelic.timeslice.value) ` o ` sum(newrelic.timeslice.value) ` | | ` f ` | ` apdex(newrelic.timeslice.value) ` o ` sum(newrelic.timeslice.value['totalExclusive']) ` | | ` count ` | ` apdex(newrelic.timeslice.value) ` | | ` value ` | ` apdex(newrelic.timeslice.value) ` | | ` threshold ` | ` max(newrelic.timeslice.value) ` | | ` threshold_min ` | ` min(newrelic.timeslice.value) ` |
71
+ \ | Valor (RPM) | Función NRQL | | ------------- | ---------------------------------------------------------------------------------- | | ` score ` | ` apdex(newrelic.timeslice.value) ` | | ` s ` | ` apdex(newrelic.timeslice.value) ` o ` count(newrelic.timeslice.value) ` | | ` t ` | ` apdex(newrelic.timeslice.value) ` o ` sum(newrelic.timeslice.value) ` | | ` f ` | ` apdex(newrelic.timeslice.value) ` o ` sum(newrelic.timeslice.value['totalExclusive']) ` | | ` count ` | ` apdex(newrelic.timeslice.value) ` | | ` value ` | ` apdex(newrelic.timeslice.value) ` | | ` threshold ` | ` max(newrelic.timeslice.value) ` | | ` threshold_min ` | ` min(newrelic.timeslice.value) ` |
72
72
73
73
### Métricas para EndUser & ; Mobile
74
74
75
75
Estas métricas devolverán el mismo resultado que obtendría de la REST API v2, pero algunos resultados pueden diferir de lo que ve en la New Relic UI. Esto se debe a que la UI emplea evento en lugar de datos de intervalo de tiempo. Si desea obtener los mismos resultados que la UI, debe consultar el evento directamente.
76
76
77
- | Valor (RPM) | Función NRQL | | ----------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `average_response_time` | `sum(newrelic.timeslice.value) / count(newrelic.timeslice.value) * 1000 `| | `error_percentage` | `(filter(count(newrelic.timeslice.value), WHERE metricTimesliceName = 'EndUser/errors') / filter(count(newrelic.timeslice.value), WHERE metricTimesliceName = 'Browser'))`| | `average_fe_response_time` | `sum(newrelic.timeslice.value['totalExclusive']) / count(newrelic.timeslice.value) * 1000` | | `average_be_response_time` | `1000 * (sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive'])) / count(newrelic.timeslice.value)` | | `average_network_time` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares'])) / count(newrelic.timeslice.value)` | | `total_network_time` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares']))` | | `network_time_percentage` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares'])) / $TIME_WINDOW_IN_SECONDS` | | `total_fe_time` | `sum(newrelic.timeslice.value['totalExclusive'])` | | `fe_time_percentage` | `100 * sum(newrelic.timeslice.value['totalExclusive']) / $TIME_WINDOW_IN_SECONDS` | | `average_dom_content_load_time` | `average(newrelic.timeslice.value) * 1000` | | `average_queue_time` | `average(newrelic.timeslice.value['totalExclusive']) * 1000` | | `total_queue_time` | `sum(newrelic.timeslice.value['totalExclusive']) * 1000` | | `total_dom_content_time` | `sum(newrelic.timeslice.value) * 1000` | | `total_app_time` | `sum(newrelic.timeslice.value['sumOfSquares'])` | | `average_app_time` | `sum(newrelic.timeslice.value['sumOfSquares']) / count(newrelic.timeslice.value)` | | `average_sent_bytes` | `sum(newrelic.timeslice.value['totalExclusive']) * 1000` | | `average_received_bytes` | `1000 * sum(newrelic.timeslice.value) / count(newrelic.timeslice.value)` | | `launch_count` | `count(newrelic.timeslice.value)` |
77
+ \| Valor (RPM) | Función NRQL | | ----------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `average_response_time` | `sum(newrelic.timeslice.value) / count(newrelic.timeslice.value) * 1000 `| | `error_percentage` | `(filter(count(newrelic.timeslice.value), WHERE metricTimesliceName = 'EndUser/errors') / filter(count(newrelic.timeslice.value), WHERE metricTimesliceName = 'Browser'))`| | `average_fe_response_time` | `sum(newrelic.timeslice.value['totalExclusive']) / count(newrelic.timeslice.value) * 1000` | | `average_be_response_time` | `1000 * (sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive'])) / count(newrelic.timeslice.value)` | | `average_network_time` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares'])) / count(newrelic.timeslice.value)` | | `total_network_time` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares']))` | | `network_time_percentage` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares'])) / $TIME_WINDOW_IN_SECONDS` | | `total_fe_time` | `sum(newrelic.timeslice.value['totalExclusive'])` | | `fe_time_percentage` | `100 * sum(newrelic.timeslice.value['totalExclusive']) / $TIME_WINDOW_IN_SECONDS` | | `average_dom_content_load_time` | `average(newrelic.timeslice.value) * 1000` | | `average_queue_time` | `average(newrelic.timeslice.value['totalExclusive']) * 1000` | | `total_queue_time` | `sum(newrelic.timeslice.value['totalExclusive']) * 1000` | | `total_dom_content_time` | `sum(newrelic.timeslice.value) * 1000` | | `total_app_time` | `sum(newrelic.timeslice.value['sumOfSquares'])` | | `average_app_time` | `sum(newrelic.timeslice.value['sumOfSquares']) / count(newrelic.timeslice.value)` | | `average_sent_bytes` | `sum(newrelic.timeslice.value['totalExclusive']) * 1000` | | `average_received_bytes` | `1000 * sum(newrelic.timeslice.value) / count(newrelic.timeslice.value)` | | `launch_count` | `count(newrelic.timeslice.value)` |
78
78
79
79
### Seriales temporales y resúmenes
80
80
0 commit comments