Skip to content

Commit e66b471

Browse files
Merge pull request #19827 from newrelic/translations-141223a2
Updated translations - (machine translation)
2 parents e84a0fd + 8f63fc0 commit e66b471

File tree

6 files changed

+1368
-33
lines changed

6 files changed

+1368
-33
lines changed

src/content/docs/infrastructure/google-cloud-platform-integrations/gcp-integrations-list/google-vertexai-monitoring-integration.mdx

+33-27
Original file line numberDiff line numberDiff line change
@@ -686,17 +686,19 @@ This integration collects GCP data for VertexAI.
686686

687687
<table>
688688
<thead>
689-
<th>
690-
Metric
691-
</th>
689+
<tr>
690+
<th>
691+
Metric
692+
</th>
692693

693-
<th>
694-
Unit
695-
</th>
694+
<th>
695+
Unit
696+
</th>
696697

697-
<th>
698-
Description
699-
</th>
698+
<th>
699+
Description
700+
</th>
701+
</tr>
700702
</thead>
701703

702704
<tbody>
@@ -790,17 +792,19 @@ This integration collects GCP data for VertexAI.
790792

791793
<table>
792794
<thead>
793-
<th>
794-
Metric
795-
</th>
795+
<tr>
796+
<th>
797+
Metric
798+
</th>
796799

797-
<th>
798-
Unit
799-
</th>
800+
<th>
801+
Unit
802+
</th>
800803

801-
<th>
802-
Description
803-
</th>
804+
<th>
805+
Description
806+
</th>
807+
</tr>
804808
</thead>
805809

806810
<tbody>
@@ -852,17 +856,19 @@ This integration collects GCP data for VertexAI.
852856

853857
<table>
854858
<thead>
855-
<th>
856-
Metric
857-
</th>
859+
<tr>
860+
<th>
861+
Metric
862+
</th>
858863

859-
<th>
860-
Unit
861-
</th>
864+
<th>
865+
Unit
866+
</th>
862867

863-
<th>
864-
Description
865-
</th>
868+
<th>
869+
Description
870+
</th>
871+
</tr>
866872
</thead>
867873

868874
<tbody>

src/i18n/content/es/docs/apis/rest-api-v2/migrate-to-nrql.mdx

+3-3
Original file line numberDiff line numberDiff line change
@@ -60,21 +60,21 @@ FROM Metric
6060
WHERE appId = $APP_ID AND metricTimesliceName = 'HttpDispatcher'
6161
```
6262

63-
| Valor (RPM) | Función NRQL | | -------------------------- | ------------------------------------------------------------------------------------------------- | | `average_response_time` | `average(newrelic.timeslice.value) * 1000` | | `calls_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `call_count` | `count(newrelic.timeslice.value)` | | `min_response_time` | `min(newrelic.timeslice.value) * 1000` | | `max_response_time` | `max(newrelic.timeslice.value) * 1000` | | `average_exclusive_time` | `average(newrelic.timeslice.value['totalExclusive'] / newrelic.timeslice.value['count']) * 1000` | | `average_value` | `average(newrelic.timeslice.value)` | | `total_call_time_per_minute` | `rate(sum(newrelic.timeslice.value), 1 minute)` | | `requests_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `standard_deviation` | `stddev(newrelic.timeslice.value) * 1000` | | `average_time` | `average(newrelic.timeslice.value) * 1000` | | `count` | `count(newrelic.timeslice.value)` | | `used_bytes_by_host` | `average(newrelic.timeslice.value) * 1024 * 1024` | | `used_mb_by_host` | `average(newrelic.timeslice.value)` | | `total_used_mb` | `sum(newrelic.timeslice.value)` | | `average_call_time` | `average(newrelic.timeslice.value) * 1000` | | `total_value` | `sum(newrelic.timeslice.value)` | | `min_value` | `min(newrelic.timeslice.value)` | | `max_value` | `max(newrelic.timeslice.value)` | | `rate` | `rate(sum(newrelic.timeslice.value), 1 second)` | | `throughput` | `rate(count(newrelic.timeslice.value), 1 second)` | | `as_percentage` | `average(newrelic.timeslice.value) * 100` | | `errors_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `error_count` | `count(newrelic.timeslice.value)` | | `total_time` | `sum(newrelic.timeslice.value) * 1000` | | `sessions_active` | `average(newrelic.timeslice.value)` | | `total_visits` | `sum(newrelic.timeslice.value)` | | `percent` | `average(newrelic.timeslice.value) * 100` | | `percent(CPU/User Time)` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `time_percentage` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `utilization` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `visits_percentage` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` |
63+
\| Valor (RPM) | Función NRQL | | -------------------------- | ------------------------------------------------------------------------------------------------- | | `average_response_time` | `average(newrelic.timeslice.value) * 1000` | | `calls_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `call_count` | `count(newrelic.timeslice.value)` | | `min_response_time` | `min(newrelic.timeslice.value) * 1000` | | `max_response_time` | `max(newrelic.timeslice.value) * 1000` | | `average_exclusive_time` | `average(newrelic.timeslice.value['totalExclusive'] / newrelic.timeslice.value['count']) * 1000` | | `average_value` | `average(newrelic.timeslice.value)` | | `total_call_time_per_minute` | `rate(sum(newrelic.timeslice.value), 1 minute)` | | `requests_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `standard_deviation` | `stddev(newrelic.timeslice.value) * 1000` | | `average_time` | `average(newrelic.timeslice.value) * 1000` | | `count` | `count(newrelic.timeslice.value)` | | `used_bytes_by_host` | `average(newrelic.timeslice.value) * 1024 * 1024` | | `used_mb_by_host` | `average(newrelic.timeslice.value)` | | `total_used_mb` | `sum(newrelic.timeslice.value)` | | `average_call_time` | `average(newrelic.timeslice.value) * 1000` | | `total_value` | `sum(newrelic.timeslice.value)` | | `min_value` | `min(newrelic.timeslice.value)` | | `max_value` | `max(newrelic.timeslice.value)` | | `rate` | `rate(sum(newrelic.timeslice.value), 1 second)` | | `throughput` | `rate(count(newrelic.timeslice.value), 1 second)` | | `as_percentage` | `average(newrelic.timeslice.value) * 100` | | `errors_per_minute` | `rate(count(newrelic.timeslice.value), 1 minute)` | | `error_count` | `count(newrelic.timeslice.value)` | | `total_time` | `sum(newrelic.timeslice.value) * 1000` | | `sessions_active` | `average(newrelic.timeslice.value)` | | `total_visits` | `sum(newrelic.timeslice.value)` | | `percent` | `average(newrelic.timeslice.value) * 100` | | `percent(CPU/User Time)` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `time_percentage` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `utilization` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` | | `visits_percentage` | `100 * sum(newrelic.timeslice.value) / $TIME_WINDOW_IN_SECONDS` |
6464

6565
Si la función incluye `$TIME_WINDOW_IN_SECONDS`, significa que debes reemplazarla con la ventana de tiempo que deseas consultar.
6666

6767
Por ejemplo, si consulta un intervalo de tiempo de 30 minutos, reemplazará `$TIME_WINDOW_IN_SECONDS` por `1800`.
6868

6969
### Apdex métricas
7070

71-
| Valor (RPM) | Función NRQL | | ------------- | ---------------------------------------------------------------------------------- | | `score` | `apdex(newrelic.timeslice.value)` | | `s` | `apdex(newrelic.timeslice.value)` o `count(newrelic.timeslice.value)` | | `t` | `apdex(newrelic.timeslice.value)` o `sum(newrelic.timeslice.value)` | | `f` | `apdex(newrelic.timeslice.value)` o `sum(newrelic.timeslice.value['totalExclusive'])`| | `count` | `apdex(newrelic.timeslice.value)` | | `value` | `apdex(newrelic.timeslice.value)` | | `threshold` | `max(newrelic.timeslice.value)` | | `threshold_min` | `min(newrelic.timeslice.value)` |
71+
\| Valor (RPM) | Función NRQL | | ------------- | ---------------------------------------------------------------------------------- | | `score` | `apdex(newrelic.timeslice.value)` | | `s` | `apdex(newrelic.timeslice.value)` o `count(newrelic.timeslice.value)` | | `t` | `apdex(newrelic.timeslice.value)` o `sum(newrelic.timeslice.value)` | | `f` | `apdex(newrelic.timeslice.value)` o `sum(newrelic.timeslice.value['totalExclusive'])`| | `count` | `apdex(newrelic.timeslice.value)` | | `value` | `apdex(newrelic.timeslice.value)` | | `threshold` | `max(newrelic.timeslice.value)` | | `threshold_min` | `min(newrelic.timeslice.value)` |
7272

7373
### Métricas para EndUser &amp; Mobile
7474

7575
Estas métricas devolverán el mismo resultado que obtendría de la REST API v2, pero algunos resultados pueden diferir de lo que ve en la New Relic UI. Esto se debe a que la UI emplea evento en lugar de datos de intervalo de tiempo. Si desea obtener los mismos resultados que la UI, debe consultar el evento directamente.
7676

77-
| Valor (RPM) | Función NRQL | | ----------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `average_response_time` | `sum(newrelic.timeslice.value) / count(newrelic.timeslice.value) * 1000 `| | `error_percentage` | `(filter(count(newrelic.timeslice.value), WHERE metricTimesliceName = 'EndUser/errors') / filter(count(newrelic.timeslice.value), WHERE metricTimesliceName = 'Browser'))`| | `average_fe_response_time` | `sum(newrelic.timeslice.value['totalExclusive']) / count(newrelic.timeslice.value) * 1000` | | `average_be_response_time` | `1000 * (sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive'])) / count(newrelic.timeslice.value)` | | `average_network_time` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares'])) / count(newrelic.timeslice.value)` | | `total_network_time` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares']))` | | `network_time_percentage` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares'])) / $TIME_WINDOW_IN_SECONDS` | | `total_fe_time` | `sum(newrelic.timeslice.value['totalExclusive'])` | | `fe_time_percentage` | `100 * sum(newrelic.timeslice.value['totalExclusive']) / $TIME_WINDOW_IN_SECONDS` | | `average_dom_content_load_time` | `average(newrelic.timeslice.value) * 1000` | | `average_queue_time` | `average(newrelic.timeslice.value['totalExclusive']) * 1000` | | `total_queue_time` | `sum(newrelic.timeslice.value['totalExclusive']) * 1000` | | `total_dom_content_time` | `sum(newrelic.timeslice.value) * 1000` | | `total_app_time` | `sum(newrelic.timeslice.value['sumOfSquares'])` | | `average_app_time` | `sum(newrelic.timeslice.value['sumOfSquares']) / count(newrelic.timeslice.value)` | | `average_sent_bytes` | `sum(newrelic.timeslice.value['totalExclusive']) * 1000` | | `average_received_bytes` | `1000 * sum(newrelic.timeslice.value) / count(newrelic.timeslice.value)` | | `launch_count` | `count(newrelic.timeslice.value)` |
77+
\| Valor (RPM) | Función NRQL | | ----------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `average_response_time` | `sum(newrelic.timeslice.value) / count(newrelic.timeslice.value) * 1000 `| | `error_percentage` | `(filter(count(newrelic.timeslice.value), WHERE metricTimesliceName = 'EndUser/errors') / filter(count(newrelic.timeslice.value), WHERE metricTimesliceName = 'Browser'))`| | `average_fe_response_time` | `sum(newrelic.timeslice.value['totalExclusive']) / count(newrelic.timeslice.value) * 1000` | | `average_be_response_time` | `1000 * (sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive'])) / count(newrelic.timeslice.value)` | | `average_network_time` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares'])) / count(newrelic.timeslice.value)` | | `total_network_time` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares']))` | | `network_time_percentage` | `(sum(newrelic.timeslice.value) - sum(newrelic.timeslice.value['totalExclusive']) - sum(newrelic.timeslice.value['sumOfSquares'])) / $TIME_WINDOW_IN_SECONDS` | | `total_fe_time` | `sum(newrelic.timeslice.value['totalExclusive'])` | | `fe_time_percentage` | `100 * sum(newrelic.timeslice.value['totalExclusive']) / $TIME_WINDOW_IN_SECONDS` | | `average_dom_content_load_time` | `average(newrelic.timeslice.value) * 1000` | | `average_queue_time` | `average(newrelic.timeslice.value['totalExclusive']) * 1000` | | `total_queue_time` | `sum(newrelic.timeslice.value['totalExclusive']) * 1000` | | `total_dom_content_time` | `sum(newrelic.timeslice.value) * 1000` | | `total_app_time` | `sum(newrelic.timeslice.value['sumOfSquares'])` | | `average_app_time` | `sum(newrelic.timeslice.value['sumOfSquares']) / count(newrelic.timeslice.value)` | | `average_sent_bytes` | `sum(newrelic.timeslice.value['totalExclusive']) * 1000` | | `average_received_bytes` | `1000 * sum(newrelic.timeslice.value) / count(newrelic.timeslice.value)` | | `launch_count` | `count(newrelic.timeslice.value)` |
7878

7979
### Seriales temporales y resúmenes
8080

0 commit comments

Comments
 (0)