-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchofit3_min.pas
794 lines (732 loc) · 28.6 KB
/
chofit3_min.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
PROGRAM CHOFIT3_MIN;
{=====================================================================
AUTHORS: Nelson W. Green (Georgia Institute of Technology)
E. Michael Perdue (Ball State University)
DATE : March 15, 2015
CHOFIT3_MIN.PAS is a simplified version of CHOFIT3.PAS, in which it is
assumed that all ions have a charge of -1 due to loss of H(+) ion. As
presented, CHOFIT3_MIN.PAS does not use Na to fit a molecular formula to
an exact mass. The program is provided as Supporting Information for
the following paper:
Nelson W. Green and E. Michael Perdue (2015) "Fast graphically-inspired
algorithm for assignment of molecular formulae in ultrahigh resolution
mass spectrometry", Anal. Chem., submitted for publication.
The source code can be compiled using the Free Pascal compiler, which
is available online at www.freepascal.org. If the required command-line
parameters are provided under the "Run|Parameters..." menu, then the
program may be executed from within the Free Pascal IDE, . Alternatively,
the standalone executable program that is generated by the compiler may be
executed from a command prompt. The user must copy the executable program
(CHOFIT3_MIN.EXE) and any data files to a folder and then open a command
window and navigate to that folder. The program is launched from a
command prompt using the following syntax:
CHOFIT3_MIN InputFileName OutputFileName Low_MW High_MW N S P 13C
where InputFileName and OutputFileName may be entered with/without
extensions. If a file extension is omitted, then a default extension
of ".dat" will be appended to InputFileName and a default extension of
".fit" will be appended to OutputFileName.
Low_MW and High_MW are the limits of nominal mass that will be evaluated.
N, S, P, and 13C are the upper limits for the number of these atoms that
can be used in a molecular formula. The maximum values are N=24, S=8,
P=4, and 13C=1. Lower limits for these elements/isotopes are all zero.
=====================================================================}
{=====================================================================
Global type declarations, constants, and variables for CHOFIT3_MIN.PAS
=====================================================================}
CONST
Version = 'CHOFIT3_MIN 20150315 Test Version'; {Current version }
TYPE
PathStr = STRING;
Component = (C,H,O,N,S,P,M,E,Z);
IonType = (Negative,Positive);
FitType = (mDa,ppm);
IFormula = ARRAY[Component] OF WORD;
RFormula = ARRAY[Component] OF REAL;
Data = RECORD
ID : LONGINT; {ID of mass peak }
CNM : WORD; {Calculated nominal mass }
Moles : IFormula; {Molecular formula }
IEM : REAL; {Exact mass of ñ1 ion }
XEM : REAL; {Exact mass of molecule }
CEM : REAL; {Calculated exact mass }
Intensity: REAL; {Peak intensity - not used }
XEMerr : REAL; {Mass fitting error, mDa/ppm }
Fit : BOOLEAN; {TRUE if found}
END;
FitPtr = ^FitRec; {Pointer type for fit records }
FitRec = RECORD {Record type for linked data }
Prev: FitPtr;
Peak: Data;
Next: FitPtr;
END;
CONST
Proton = 1.00727645216; {Exact mass of H+ }
MinMW : WORD = 0; {Program minimum MW }
MaxMW : WORD = 2000; {Program maximum MW }
LowMW : WORD = 150; {User minimum MW }
HighMW : WORD = 1000; {User maximum MW }
Digits : BYTE = 6; {Number of decimal places}
MinFit : REAL = 0; {Program minimum error }
MaxFit : REAL = 2; {Program maximum error }
MaxErr : REAL = 0.40; {Maximum fitting error }
FitMode : FitType = ppm; {Error units - ppm, mDa }
IonMode : IonType = Negative; {Negative/Positive ions }
TotalPeaks: LONGWORD = 0; {Total no. of mass peaks }
TotalFormulae: LONGWORD =0; {Total molecular formulae}
{=====================================================================
Nominal masses of components, using zero for charge
=====================================================================}
NM: IFormula =
( 12, 1, 16, {C H O}
15, 32, 32, {HN S HP}
22, 1, 0); {Na-H 13C-12C Z}
{=====================================================================
Exact masses of components, using zero for charge
=====================================================================}
EM: RFormula = {IUPAC 2003 Masses}
( 12.0000000000, 1.0078250319, 15.9949146223, {C H O}
15.0108990393, 31.9720707300, 31.9815865219, {HN S HP}
21.9819446281, 1.0033548380, 0.0005485799); {Na-H 13C-12C Z}
{=====================================================================
The program limits on minimum and maximum moles are:
=====================================================================}
{ C H O N S P M E Z}
Min : IFormula = ( 1, 2, 0, 0, 0, 0, 0, 0, 1);
Max : IFormula = (166,284, 72, 24, 8, 4, 2, 1, 5);
{=====================================================================
User-specified limits on minimum and maximum moles are:
=====================================================================}
{ C H O N S P M E Z}
Low : IFormula = ( 1, 2, 0, 0, 0, 0, 0, 0, 1);
High: IFormula = ( 1, 2, 0, 0, 0, 0, 0, 0, 1); {****}
{=====================================================================
Valences of the Components:
=====================================================================}
{C, H, O, N, S, P, M, E, Z}
Valence: IFormula = (4, 1, 2, 2, 2, 2, 0, 0, 0);
VAR
InFile, {Name of input data file }
InPath, {File path for data file }
OutFile, {Name of output file }
OutPath : PathStr; {File path for output file }
DevI, {Input file device }
DevO : TEXT; {Output file device }
Peak : Data; {The master variable for mass}
Finished : BOOLEAN; {TRUE if program is closed }
BaseRec, {Pointer to first fit record }
LastRec, {Pointer to last fit record }
PeakRec : FitPtr; {Pointer to any fit record }
{=====================================================================
The RoundTo function rounds the real number X to the specified number
of decimal places.
=====================================================================}
FUNCTION RoundTo (X: REAL; Places: BYTE): REAL;
BEGIN
RoundTo:=ROUND(X*EXP(Places*LN(10)))/(EXP(Places*LN(10)));
END;
{=====================================================================
The Exists function checks if the file path is valid
=====================================================================}
FUNCTION Exists (FileSpec: PathStr): BOOLEAN;
VAR Dev: FILE;
BEGIN
{$I-}
ASSIGN (Dev,FileSpec);
RESET (Dev);
CLOSE (Dev);
{$I+}
Exists:=(IORESULT=0) AND (FileSpec<>'');
END;
{=====================================================================
BuildFitRec creates a doubly linked list to store each mass and the
molecular formulae that are assigned to that mass. BaseRec is the
first record in the list of peaks and solutions for those peaks.
PeakRec is the first solution for the current Peak. BuildFitRec is
called once for each new molecular formula, so TotalFormulae is
incremented here.
=====================================================================}
PROCEDURE BuildFitRec (Peak: Data; Prev,Next: FitPtr; VAR M: FitPtr);
BEGIN
NEW(M);
M^.Peak:=Peak;
M^.Prev:=Prev;
M^.Next:=Next;
IF Prev=Next THEN
BEGIN
BaseRec:=M;
PeakRec:=M;
END;
IF Prev<>NIL THEN
BEGIN
Prev^.Next:=M;
IF Prev^.Peak.ID <> M^.Peak.ID THEN PeakRec:=M;
END;
IF Next<>NIL THEN Next^.Prev:=M;
TotalFormulae:=SUCC(TotalFormulae);
END;
{=====================================================================
DeleteFitRecs deletes a doubly linked list of molecular formulae.
=====================================================================}
PROCEDURE DeleteFitRecs (VAR Target: FitPtr);
VAR P,N: FitPtr;
BEGIN
WHILE Target <> NIL DO
BEGIN
P:=Target;
N:=Target^.Next;
DISPOSE(P);
P:=NIL;
Target:=N;
END;
END;
{=====================================================================
The function Valid evaluates a molecular formula to ensure that its
composition obeys the Senior Rules and meets other compositional
constraints that X ò Low[X] for X=CHONSPME and O ó (C+2+3*N+4*S+4*P).
=====================================================================}
FUNCTION Valid (Moles: IFormula): BOOLEAN;
VAR
OK : BOOLEAN;
Sum: INTEGER;
I : Component;
BEGIN
{
----------------------------------------
Minimum constraints on CHONSPME formulae
----------------------------------------
}
OK:=TRUE;
FOR I:=C TO E DO OK:=OK AND (Moles[I]>=Low[I]);
{
The Senior Rules rely heavily on valence, which is an elemental property.
CHOFIT uses components rather than elements, so the valences used in CHOFIT
are those of components (e.g., NH has a valence of 2), and they work for
most tests. Components that are exchange operators (M and E) are not
included in these tests because they do not alter the number of bonds in a
molecule.
------------------------------------
Senior Rule #1 for CHONSPME formulae
------------------------------------
The sum of atoms having odd valences must be an even number. The use of
components results in only H having an odd valence.
}
Sum:=0;
FOR I:=C TO P DO IF ODD(Valence[I]) THEN Sum:=Sum+Moles[I];
OK:=OK AND (NOT ODD(Sum));
{
------------------------------------
Senior Rule #2 for CHONSPME formulae
------------------------------------
The sum of the valences must equal or exceed two times the maximum
valence. Components don't work here. For example, H-CðN: passes this
test when elemental valences of 4, 1, and 3 are used for C, H, and N. It
fails the test when component valences of 4 and 2 are used for C and NH.
NaCðN: passes the test when elemental valences of 4, 1, and 3 are used
for C, Na, and N. It fails the test when component valences of 4, 2, and
0 are used for C, NH, and Na_H.
The problem is overcome if the hidden two valences inside multiatomic
components NH and PH are counted explicitly.
}
Sum:=0;
FOR I:=C TO P DO
CASE I OF
N, P: Sum:=Sum+Moles[I]*Valence[I]+Moles[I]*2;
ELSE Sum:=Sum+Moles[I]*Valence[I];
END;
OK:=OK AND (Sum >= 2*Valence[C]);
{
------------------------------------
Senior Rule #3 for CHONSPME formulae
------------------------------------
The difference between the maximum and minimum number of bonds that
can exist in a molecular formula is known as unsaturation (U) or double
bond equivalents (DBE), and U (or DBE) must be ò 0.
Bmax = SUM(Moles[i]*Valence[i])/2
Bmin = SUM(Moles[i]) - 1
U = Bmax - Bmin = [SUM(Moles[i]*Valence[i]) - SUM(Moles[i]*2) + 2]/2
U = [SUM(Moles[i]*(Valence[i] - 2)) + 2]/2
2U = [SUM(Moles[i]*(Valence[i] - 2)) + 2] ò 0
}
Sum:=2;
FOR I:=C TO P DO Sum:=Sum+Moles[I]*(Valence[I]-2);
OK:=OK AND (Sum >=0);
{
-------------------------------
Other compositional constraints
-------------------------------
Moles[O] should be allowed to be as large as Moles[C]+2 in CHO molecules.
Organic molecules containing N, S, and P could possibly be organic nitrates,
organic sulfates, and organic phosphates, so the upper limit for Moles[O]
should be (Moles[C]+2 + 3*Moles[N]+4*Moles[P]+4*Moles[S]).
}
OK:=OK AND (Moles[O]<=2+Moles[C]+3*Moles[N]+4*Moles[P]+4*Moles[S]);
Valid:=OK;
END;
{=====================================================================
The GetCoreFormula procedure is the heart of CHOFIT3_MIN.PAS. Here the
algorithm based on low-mass moieties CH4O(-1) and C4O(-3) is applied
to the exact mass that remains after accounting for the contributions
of all non-CHO elements/isotopes. This procedure generates all
possible combinations of C, H, and O for a given MW and subject to the
additional constraints that are contained in the Valid function.
=====================================================================}
PROCEDURE GetCoreFormula (XEM, CoreXEM: REAL; CoreRNM: WORD;
VAR Loop: IFormula; VAR Found: BOOLEAN);
VAR
CoreCEM,
XEMerror : REAL;
Moieties : SHORTINT;
Step : Component;
Test : REAL;
Attempts : WORD;
GoodFit : BOOLEAN;
CONST
MoietyMass = 0.0363855087200022; {The exact mass of the CH4O-1 moiety}
MaxAttempts: BYTE = 20; {The maximum number of mixing lines }
BEGIN
{
Look for a CHO core formula, which must have an even NM. Don't even
try if CoreRNM is odd, because there cannot be a CHO core formula that
gives an odd NM.
}
Found:=FALSE;
IF NOT ODD(CoreRNM) THEN
BEGIN
{
Find the hydrocarbon having this NM and the maximum number of moles
of C.
}
Loop[C]:=CoreRNM DIV NM[C];
Loop[H]:=CoreRNM -Loop[C]*NM[C];
Loop[O]:=0;
CoreCEM:=0;
{
Calculate the EM of the CHO core formula.
}
FOR Step:=C TO O DO
CoreCEM:=CoreCEM+Loop[Step]*EM[Step];
{
Now calculate the error in matching CoreCEM and CoreXEM. Because the
mass of CoreXEM ó Peak.XEM, this error will be somewhat larger than the
error based on Peak.XEM. Note that XEMerror may be positive or negative.
}
CASE FitMode OF
ppm: XEMerror:=ROUNDTO(1E6*(CoreCEM-CoreXEM)/XEM,Digits);
mDa: XEMerror:=ROUNDTO(1E3*(CoreCEM-CoreXEM),Digits);
END;
Attempts:=0;
MaxAttempts:=ROUND(0.8+CoreRNM/60);
{
Look for a solution on the current line connecting the CH(4)O(-1) moiety
and the current CHO core formula. If there is no solution, move along
line connecting the C(4)O(-3) moiety and the current CHO core formula to
the next line connecting the CH(4)O(-1) moiety and the new guess for
the CHO core formula. XEMError is compared with MaxErr because 13C has
already been removed in FindMolecularFormulae.
}
WHILE (ABS(XEMerror)>MaxErr) AND (Attempts<MaxAttempts) DO
BEGIN
{
Calculate the number of CH(4)O(-1) moieties that are needed to give the
current molecular formula (the max. C hydrocarbon) the same mass as the
CHO core formula. Test is a real number, rounded to Digits decimal
places.
}
Test:=ROUNDTO((CoreXEM-CoreCEM)/MoietyMass,Digits);
CASE FitMode OF
ppm: GoodFit:=(ROUNDTO(1E6*ABS((CoreCEM+ROUND(Test)*MoietyMass
-CoreXEM)/XEM),Digits) <= MaxErr);
mDa: GoodFit:=(ROUNDTO(1E3*ABS(CoreCEM+ROUND(Test)*MoietyMass
-CoreXEM),Digits) <= MaxErr);
END;
IF GoodFit THEN
BEGIN
{
Advance along the line connecting the CH(4)O(-1) moiety and the
current CHO core formula to the final CHO core formula. Because
Test is a real number, it is possible to move toward or away from
the CH(4)O(-1) moiety. We need to be sure that no negative numbers
will be generated by adding or subtracting CH(4)O(-1).
}
Moieties:=ROUND(Test);
IF (Loop[C]+Moieties >= Low[C]) AND (Loop[H]+4*Moieties >= Low[H])
AND (Loop[O]-Moieties >= Low[O]) THEN
BEGIN
Loop[C]:=Loop[C]+Moieties;
Loop[H]:=Loop[H]+4*Moieties;
Loop[O]:=Loop[O]-Moieties;
END
ELSE Attempts:=MaxAttempts;
END
ELSE
BEGIN
{
Move along line connecting the C(4)O(-3) moiety and the current CHO
core formula to the next line connecting the CH(4)O(-1) moiety and
the new guess for the CHO core formula. For molecular formulae
with EM ó 1000 Da, there are no more than 20 lines to explore, so
the WHILE loop has been limited to 20 attempts.
Here we must also be careful not to subtract too much C, and we use
this C(4)O(-3) moiety in single steps.
}
IF Loop[C]>4 THEN
BEGIN
Loop[C]:=Loop[C]-4;
Loop[O]:=Loop[O]+3;
END
ELSE Attempts:=MaxAttempts;
END;
CoreCEM:=0;
FOR Step:=C TO O DO
CoreCEM:=CoreCEM+Loop[Step]*EM[Step];
Test:=ROUNDTO((CoreXEM-CoreCEM)/MoietyMass,Digits);
CASE FitMode OF
ppm: XEMerror:=ROUNDTO(1E6*(CoreCEM-CoreXEM)/XEM,Digits);
mDa: XEMerror:=ROUNDTO(1E3*(CoreCEM-CoreXEM),Digits);
END;
Attempts:=Attempts+1;
END;
Found:=Valid(Loop) AND (ABS(XEMerror)<=MaxErr);
END;
END;
{=====================================================================
FindMolecularFormulae assigns all possible molecular formulae to each
mass in the input file, subject to user constraints on the moles of
C, H, O, N, S, P, M, E, and Z. This particular version uses
conventional loops for N, S, P, M, E, and Z. C, H, and O are found
simultaneously in GetCoreFormula by use of the new algorithm we have
developed based on low-mass moieties (LMM's).
=====================================================================}
PROCEDURE FindMolecularFormulae;
VAR
Loop : IFormula;
Step : Component;
CoreXEM : REAL;
CoreRNM : WORD;
Formula_OK: BOOLEAN;
BEGIN
{
Initialize some variables that apply to the whole mass list.
}
BaseRec:=NIL;
LastRec:=NIL;
TotalFormulae:=0;
Peak.ID:=0;
{
Start processing the input file.
}
ASSIGN (DevI,InPath+InFile);
RESET (DevI);
WHILE NOT EOF(DevI) DO
BEGIN
WITH Peak DO
BEGIN
{
Initialize some variables that apply to this peak.
}
Fit:=FALSE;
Formula_OK:=FALSE;
CoreXEM:=0;
CoreRNM:=0;
FOR Step:=C TO Z DO
BEGIN
Moles[Step]:=0;
Loop[Step]:=0;
END;
PeakRec:=NIL;
ID:=SUCC(ID);
{
Now read some data...
}
READLN (DevI, IEM);
IF ID>1 THEN
BEGIN
WRITE (#8#8#8#8#8#8);
WRITE (ID:6);
END
ELSE WRITE ('Processing ID ',ID:6);
{
Convert the (presumably) singly-charged ion to a molecule.
}
IF IonMode=Negative THEN XEM:=IEM+Proton ELSE XEM:=IEM-Proton;
{
XEM is now the mass of the neutral molecule.
Do the calculations only for LowMW <= XEM <= HighMW, rounding to the
nearest integer masses. Because LowMW and HighMW are integers and
exact mass can round to nominal mass plus one, the upper limit is
HighMW+1.
}
IF (ROUND(XEM) >= LowMW) AND (ROUND(XEM) <= (HighMW+1)) THEN
BEGIN
{
Start looping through the Components.
}
Loop[C]:=Low[C];
Loop[H]:=Low[H];
Loop[O]:=Low[O];
Loop[Z]:=Low[Z];
REPEAT
IF Loop[Z]>1 THEN XEM:=XEM*Loop[Z]/(Loop[Z]-1);
Loop[M]:=Low[M];
REPEAT
Loop[P]:=Low[P];
REPEAT
Loop[S]:=Low[S];
REPEAT
Loop[N]:=Low[N];
REPEAT
Loop[E]:=Low[E];
REPEAT
{
Strip off the exact mass of all loop constituents to
yield the CHO core of this molecular formula.
}
CoreXEM:=Peak.XEM;
FOR Step:=N TO E DO CoreXEM:=CoreXEM-Loop[Step]*EM[Step];
{
CoreXEM is required to be as large as the EM of CH(4).
}
IF CoreXEM>=EM[C]+4*EM[H] THEN
BEGIN
CoreRNM:=ROUND(CoreXEM);
Formula_OK:=FALSE;
{
For EM ó 1000 Da, only H can cause a "rounding up"
error, which occurs first at C(31)H(64), for which
the EM is 436.500802 Da. If EM ò 436.500802 Da, an
even CoreRNM could actually be odd and vice versa.
}
IF NOT ODD(CoreRNM) THEN
GetCoreFormula (XEM, CoreXEM, CoreRNM, Loop, Formula_OK)
ELSE
IF ODD(CoreRNM) AND (CoreXEM>=31*EM[C]+64*EM[H]) THEN
GetCoreFormula (XEM, CoreXEM, CoreRNM-1, Loop, Formula_OK);
{
If this is a good formula, the residual mass should
be zero (or nearly so). The error of the fit is
calculated either in mDa or ppm.
}
IF Formula_OK THEN
BEGIN
{
Re-calculate the CEM and CNM using updated Loop[]
values.
}
CEM:=0;
CNM:=0;
FOR Step:=C TO E DO
BEGIN
CEM:=CEM+Loop[Step]*EM[Step];
CNM:=CNM+Loop[Step]*NM[Step];
END;
CASE FitMode OF
ppm: XEMerr:=ROUNDTO(1E6*(CEM-XEM)/XEM,Digits);
mDa: XEMerr:=ROUNDTO(1E3*(CEM-XEM),Digits);
END;
Formula_OK:=(ABS(XEMerr) <= MaxErr);
END
ELSE Formula_OK:=FALSE;
END
ELSE Formula_OK:=FALSE;
{
All of the following calculations are only done if the
formula is valid.
}
IF Formula_OK THEN
BEGIN
{
CNM:=0;
FOR Step:=C TO E DO CNM:=CNM+Loop[Step]*NM[Step];
}
{
Transfer the molecular formula from Loop to Moles.
}
FOR Step:=C TO Z DO Moles[Step]:=Loop[Step];
Fit:=TRUE;
{
Store the valid solution in a linked list.
}
BuildFitRec (Peak,LastRec,NIL,LastRec);
END;
{
The E loop is terminated when E>1.
}
Loop[E]:=SUCC(Loop[E]);
UNTIL (Loop[E]>High[E]);
{
The N loop is terminated when N>HighN.
}
Loop[N]:=SUCC(Loop[N]);
UNTIL (Loop[N]>High[N]);
{
The S loop is terminated when S>HighS.
}
Loop[S]:=SUCC(Loop[S]);
UNTIL (Loop[S]>High[S]);
{
The P loop is terminated when P>HighP.
}
Loop[P]:=SUCC(Loop[P]);
UNTIL (Loop[P]>High[P]);
{
The M loop is terminated when M>HighM.
}
Loop[M]:=SUCC(Loop[M]);
UNTIL (Loop[M]>High[M]);
{
The Z loop is used when no solution can be found for Z=1. The Z
loop is terminated when Z>HighZ.
}
IF Fit THEN Loop[Z]:=High[Z];
Loop[Z]:=SUCC(Loop[Z]);
UNTIL (Loop[Z]>High[Z]);
{
Insert an "empty" record if no molecular formula could be fit to the
peak.
}
END;
IF (NOT Fit) THEN
BEGIN
{
Reset XEM to the mass of a molecule that was detected as a singly
charged ion.
}
XEM:=XEM/High[Z];
CEM:=0;
CNM:=0;
XEMerr:=0;
BuildFitRec (Peak,LastRec,NIL,LastRec);
END;
END;
END;
CLOSE (DevI);
END;
{=====================================================================
WriteOutputFile writes the output of CHOFIT3_MIN.PAS to a text file.
=====================================================================}
PROCEDURE WriteOutputFile (VAR BaseRec: FitPtr);
VAR
ThisRec: FitPtr;
I : Component;
HCount : BYTE;
Q : SHORTINT;
Count : LONGWORD;
Txt : STRING[40];
BEGIN
WRITELN;
WRITE ('Writing the output file...');
ASSIGN (DevO, OutPath+OutFile);
REWRITE (DevO);
ThisRec:=BaseRec;
{
Write the column headings to the output file.
}
WRITELN (DevO,'Program Name: ':15,Version);
WRITELN (DevO,'Input File : ':15,InPath+InFile);
WRITELN (DevO,'Output File : ':15,OutPath+OutFile);
WRITELN (DevO);
WRITE (DevO,'ID':6,'IEM':12,'XEM':12,'CEM':12,'CNM':6);
WRITE (DevO,'13C':6,'12C':6,'1H':6);
WRITE (DevO,'16O':6,'14N':6,'32S':6,'31P':6,'23Na':6,'Z':6);
WRITE (DevO,'XEMerr':10);
WRITELN (DevO);
WHILE ThisRec<>NIL DO
BEGIN
WITH ThisRec^.Peak DO
BEGIN
WRITE (DevO,ID:6,IEM:12:6,XEM:12:6,CEM:12:6,CNM:6);
WRITE (DevO,Moles[E]:6,(Moles[C]-Moles[E]):6);
WRITE (DevO,(Moles[H]+Moles[N]+Moles[P]-Moles[M]):6);
FOR I:=O TO M DO WRITE (DevO, Moles[I]:6);
IF IonMode=Negative THEN
WRITE (DevO,-Moles[Z]:6) ELSE WRITELN (DevO,Moles[Z]:6);
WRITE (DevO,XEMerr:10:6);
WRITELN (DevO);
END;
ThisRec:=ThisRec^.Next;
END;
CLOSE (DevO);
WRITELN;
WRITE ('Press ENTER to close the program...');
READLN;
END;
{=====================================================================
Main program in CHOFIT3_MIN.PAS
=====================================================================}
BEGIN
IF ParamCount = 8 THEN
BEGIN
GetDir (0,InPath);
InPath:=InPath+'\';
InFile:=Paramstr(1);
IF POS('.',InFile)=0 THEN InFile:=InFile+'.dat';
IF Exists (InPath+InFile) THEN
BEGIN
OutPath:=InPath;
OutFile:=Paramstr(2);
IF POS('.',OutFile)=0 THEN OutFile:=OutFile+'.fit';
Val(Paramstr(3),LowMW);
IF (LowMW < MinMW) OR (LowMW > MaxMW) THEN LowMW:=MinMW;
Val(Paramstr(4),HighMW);
IF (HighMW < LowMW) OR (HighMW > MaxMW) THEN HighMW:=MaxMW;
Val(Paramstr(5),High[N]);
IF (High[N] < Min[N]) OR (High[N] > Max[N]) THEN High[N]:=Max[N];
Val(Paramstr(6),High[S]);
IF (High[S] < Min[S]) OR (High[S] > Max[S]) THEN High[S]:=Max[S];
Val(Paramstr(7),High[P]);
IF (High[P] < Min[P]) OR (High[P] > Max[P]) THEN High[P]:=Max[P];
Val(Paramstr(8),High[E]);
IF (High[E] < Min[E]) OR (High[E] > Max[E]) THEN High[E]:=Max[E];
WRITELN;
WRITELN;
WRITELN ('Program: ',Version);
WRITELN ('InFile : ',InPath+InFile);
WRITELN ('OutFile: ',OutPath+OutFile);
WRITELN ('Low MW : ',LowMW:6, ' ':2,'High MW : ',HighMW:6);
WRITELN ('Low C : ',Low[C]:6,' ':2,'High C : ',High[C]:6);
WRITELN ('Low H : ',Low[H]:6,' ':2,'High H : ',High[H]:6);
WRITELN ('Low O : ',Low[O]:6,' ':2,'High O : ',High[O]:6);
WRITELN ('Low N : ',Low[N]:6,' ':2,'High N : ',High[N]:6);
WRITELN ('Low S : ',Low[S]:6,' ':2,'High S : ',High[S]:6);
WRITELN ('Low P : ',Low[P]:6,' ':2,'High P : ',High[P]:6);
WRITELN ('Low Na : ',Low[M]:6,' ':2,'High Na : ',High[M]:6);
WRITELN ('Low 13C: ',Low[E]:6,' ':2,'High 13C: ',High[E]:6);
FindMolecularFormulae;
WriteOutputFile (BaseRec);
DeleteFitRecs (BaseRec);
WRITELN;
WRITELN;
END
ELSE
BEGIN
WRITE ('Input file does not exist. Press ENTER to exit and try again.');
READLN;
EXIT;
END;
END
ELSE
BEGIN
WRITELN;
WRITELN;
WRITELN ('Please launch this program from a command prompt using the syntax:');
WRITELN;
WRITELN ('ProgramName.exe InputFileName OutputFileName Low_MW High_MW N S P 13C');
WRITELN;
WRITELN ('where InputFileName and OutputFileName may be entered with/without ');
WRITELN ('extensions. If a file extension is omitted, then a default extension');
WRITELN ('of ".dat" will be appended to InputFileName and a default extension of');
WRITELN ('".fit" will be appended to OutputFileName.');
WRITELN;
WRITELN ('Low_MW and High_MW are the limits of nominal mass that will be evaluated.');
WRITELN;
WRITELN ('N, S, P, and 13C are the upper limits for the number of these atoms that');
WRITELN ('can be used in a molecular formula. The maximum values are N=10, S=6,');
WRITELN ('P=4, and 13C=1. Lower limits for these elements/isotopes are all zero.');
WRITELN;
WRITELN;
WRITE ('Press ENTER to exit and try again...');
READLN;
WRITELN;
WRITELN;
END;
END.