This repository has been archived by the owner on Dec 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
executable file
·101 lines (78 loc) · 2.99 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
import argparse
from gensim.models import KeyedVectors
import Pyro4
parser = argparse.ArgumentParser(description='Word Vectors Served via Pyro4.', add_help=False)
parser.add_argument('--id', default='w2v', type=str)
parser.add_argument('--no-binary', dest='binary', action='store_false')
parser.add_argument('--no-sims', dest='sims', action='store_false')
parser.add_argument('-h', '--host', default='', type=str)
parser.add_argument('-p', '--port', default=9090, type=int)
parser.add_argument('w2v', type=argparse.FileType('rb'))
args = parser.parse_args()
Pyro4.config.SERIALIZERS_ACCEPTED = {'pickle'}
Pyro4.config.SERIALIZER = 'pickle'
wv = KeyedVectors.load_word2vec_format(args.w2v.name, binary=args.binary, unicode_errors='ignore')
if args.sims:
wv.init_sims(replace=True)
# This is an adapter for the KeyedVectors class.
# Unfortunately, it is not possible to expose the __getitem__ method.
class PyroVectors:
def __init__(self, wv):
self.wv = wv
@Pyro4.expose
def word_vec(self, word, use_norm=False):
return self.wv.word_vec(word, use_norm)
@Pyro4.expose
def words_vec(self, words, use_norm=False):
return {word: self.wv.word_vec(word, use_norm) for word in words if word in self.wv}
@Pyro4.expose
def most_similar(self, positive=[], negative=[], topn=10, restrict_vocab=None, indexer=None):
return self.wv.most_similar(positive, negative, topn, restrict_vocab, indexer)
@Pyro4.expose
def wmdistance(self, document1, document2):
return self.wmdistance(document1, document2)
@Pyro4.expose
def most_similar_cosmul(self, positive=[], negative=[], topn=10):
return self.wv.most_similar_cosmul(positive, negative, topn)
@Pyro4.expose
def similar_by_word(self, word, topn=10, restrict_vocab=None):
return self.wv.similar_by_word()
@Pyro4.expose
def similar_by_vector(self, vector, topn=10, restrict_vocab=None):
return self.wv.similar_by_vector(word, topn, restrict_vocab)
@Pyro4.expose
def doesnt_match(self, words):
return self.wv.doesnt_match(vector, topn, restrict_vocab)
@Pyro4.expose
def similarity(self, w1, w2):
return self.wv.similarity(w1, w2)
@Pyro4.expose
def n_similarity(self, ws1, ws2):
return self.wv.n_similarity(ws1, ws2)
@Pyro4.expose
def wmdistance(self, document1, document2):
return self.wv.wmdistance(document1, document2)
@Pyro4.expose
@property
def syn0(self):
return self.wv.syn0
@Pyro4.expose
@property
def syn0norm(self):
return self.wv.syn0norm
@Pyro4.expose
@property
def vocab(self):
return self.wv.vocab
@Pyro4.expose
@property
def index2word(self):
return self.wv.index2word
@Pyro4.expose
@property
def vector_size(self):
return self.wv.vector_size
daemon = Pyro4.Daemon(host=args.host, port=args.port)
print(daemon.register(PyroVectors(wv), args.id), flush=True)
daemon.requestLoop()