@@ -135,14 +135,16 @@ The result will be the model's predictions for the entire dataset.
135135 1 . Multilayer Peceptron
136136 2 . Autoencoder
137137 3 . Softmax Network
138- 4 . *** Natural Language Processing***
138+ 4 . *** Generative Modeling***
139+ 1 . Tabular Generative Adversarial Networks
140+ 5 . *** Natural Language Processing***
139141 1 . Word2Vec (Continous Bag of Words, Skip-Gram)
140142 2 . Stemming
141143 3 . Bag of Words
142144 4 . TFIDF
143145 5 . Tokenization
144146 6 . Auxiliary Text Processing Functions
145- 5 . *** Computer Vision***
147+ 6 . *** Computer Vision***
146148 1 . The Convolution Operation
147149 2 . Max, Min, Average Pooling
148150 3 . Global Max, Min, Average Pooling
@@ -153,12 +155,12 @@ The result will be the model's predictions for the entire dataset.
153155 - Horizontal/Vertical Roberts Filter
154156 - Gaussian Filter
155157 - Harris Corner Detector
156- 6 . *** Principal Component Analysis***
157- 7 . *** Naive Bayes Classifiers***
158+ 7 . *** Principal Component Analysis***
159+ 8 . *** Naive Bayes Classifiers***
158160 1 . Multinomial Naive Bayes
159161 2 . Bernoulli Naive Bayes
160162 3 . Gaussian Naive Bayes
161- 8 . *** Support Vector Classification***
163+ 9 . *** Support Vector Classification***
162164 1 . Primal Formulation (Hinge Loss Objective)
163165 2 . Dual Formulation (Via Lagrangian Multipliers)
16416610 . *** K-Means***
@@ -191,7 +193,7 @@ The result will be the model's predictions for the entire dataset.
191193 3 . Mean Normalization
192194 4 . One Hot Representation
193195 5 . Reverse One Hot Representation
194- 17 . *** Utilities***
196+ 18 . *** Utilities***
195197 1 . TP, FP, TN, FN function
196198 2 . Precision
197199 3 . Recall
0 commit comments