Skip to content
This repository was archived by the owner on Feb 7, 2024. It is now read-only.
This repository was archived by the owner on Feb 7, 2024. It is now read-only.

Tensor reference in trace input leads to copies in make_variable #10

@nunoplopes

Description

@nunoplopes

For example, when running zeros(), underneath PyTorch first creates a new tensor and then calls zero_.
So we end up with a trace like:

%0 = <Float> zero_ in<0> #refs E/I=1/2 #output shape=[1, 2]

Inputs:
in<0>: tensor(Float : [1, 2])

We now have a reference to the tensor that is returned by zeros.

Now let's look at the code in torch/csrc/autograd/generated/variable_factories.h:

inline at::Tensor zeros(at::IntArrayRef size, at::TensorOptions options = {}) {
  at::AutoDispatchBelowADInplaceOrView guard;
  return autograd::make_variable(at::zeros(size, at::TensorOptions(options).requires_grad(), /*requires_grad=*/options.requires_grad());
}

And now in torch/csrc/autograd/variable.h:

inline Variable make_variable(at::Tensor data, bool requires_grad = false, bool allow_tensor_metadata_change = true) {
  if (data.defined()) {
    if (data.getIntrusivePtr().use_count() == 1 && data.getIntrusivePtr()->unique_version()) {
      // reuse tensor
    } else {
      auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(...);
      return Variable(data_impl_copy); // <-- missing std::move here btw
    }
  }
  return Variable();
}

So now because we have that reference we force this function to create a copy of the tensor unnecessarily.
Can this be fixed?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions