@@ -23,7 +23,9 @@ def learn_one(self, x: dict[FeatureName, typing.Any], y: dict[FeatureName, bool]
23
23
24
24
"""
25
25
26
- def predict_proba_one (self , x : dict [FeatureName , typing .Any ], ** kwargs : typing .Any ) -> dict [FeatureName , dict [bool , float ]]:
26
+ def predict_proba_one (
27
+ self , x : dict [FeatureName , typing .Any ], ** kwargs : typing .Any
28
+ ) -> dict [FeatureName , dict [bool , float ]]:
27
29
"""Predict the probability of each label appearing given dictionary of features `x`.
28
30
29
31
Parameters
@@ -40,7 +42,9 @@ def predict_proba_one(self, x: dict[FeatureName, typing.Any], **kwargs: typing.A
40
42
# In case the multi-label classifier does not support probabilities
41
43
raise NotImplementedError
42
44
43
- def predict_one (self , x : dict [FeatureName , typing .Any ], ** kwargs : typing .Any ) -> dict [FeatureName , bool ]:
45
+ def predict_one (
46
+ self , x : dict [FeatureName , typing .Any ], ** kwargs : typing .Any
47
+ ) -> dict [FeatureName , bool ]:
44
48
"""Predict the labels of a set of features `x`.
45
49
46
50
Parameters
@@ -69,7 +73,12 @@ class MultiTargetRegressor(Estimator, abc.ABC):
69
73
"""Multi-target regressor."""
70
74
71
75
@abc .abstractmethod
72
- def learn_one (self , x : dict [FeatureName , typing .Any ], y : dict [FeatureName , RegTarget ], ** kwargs : typing .Any ) -> None :
76
+ def learn_one (
77
+ self ,
78
+ x : dict [FeatureName , typing .Any ],
79
+ y : dict [FeatureName , RegTarget ],
80
+ ** kwargs : typing .Any ,
81
+ ) -> None :
73
82
"""Fits to a set of features `x` and a real-valued target `y`.
74
83
75
84
Parameters
0 commit comments