Open
Description
river version: 0.21.2
Python version: 3.10
Operating system: Windows
Describe the bug
Steps/code to reproduce
# Sample code to reproduce the problem
# Please do your best to provide a Minimal, Reproducible Example: https://stackoverflow.com/help/minimal-reproducible-example
def define_model(alpha):
regression = linear_model.LogisticRegression(intercept_lr=0,
optimizer=optim.SGD(0.0001),
loss=optim.losses.Quantile(alpha))
pipeline = compose.Pipeline(
# THIS IS THE LOCATION FOR FEATURE ENGINEERING
('features', compose.TransformerUnion(
compose.Select(‘var1’, ‘var2’),
('Target_30_days', feature_extraction.TargetAgg(
by=['group'],
how=utils.TimeRolling(stats.Mean(), dt.timedelta(days=30))
))
)),
('scale', preprocessing.StandardScaler()),
('lin_reg', preprocessing.TargetStandardScaler(
regression
))
)
return pipeline
def train():
# set streaming data (ultimately want to connect to Kafka)
sdf = self.rdm.stream_data()
i = 0
for idv, target in sdf:
# get instance date
t = idv[self.rdm.target_dt]
# Obtain prior prediction and update model in one go
y_est = model.predict_one(idv)
# learn
model.learn_one(x=idv, y=target, t=t)
This then throws the error:
TypeError: TimeRolling.update() missing 1 required keyword-only argument: 't'
Metadata
Metadata
Assignees
Labels
No labels
Activity