Motivation: River lacks native quantile regression for streaming tasks; this enables prediction intervals and robust regression. (Related: “Quantile Regression Approaches”.)
Proposal:
- New estimator(s) linear.QuantileSGDRegressor supporting multiple τ in one pass.
- Optimizer: per-sample pinball loss with optional forgetting factor.
- API parity with linear_model regressors (fit_one/learn_one/predict_one).
- Benchmarks: synthetic piecewise-stationary streams; compare vs. batch baselines.
- Docs: example + tutorial notebook.
Questions: preference for single-τ estimator vs multi-τ; default regularization; placement under linear?