Skip to content

[ENH] Online Quantile Regression with Pinball-Loss Optimizers #1701

@sisird864

Description

@sisird864

Motivation: River lacks native quantile regression for streaming tasks; this enables prediction intervals and robust regression. (Related: “Quantile Regression Approaches”.)

Proposal:

  • New estimator(s) linear.QuantileSGDRegressor supporting multiple τ in one pass.
  • Optimizer: per-sample pinball loss with optional forgetting factor.
  • API parity with linear_model regressors (fit_one/learn_one/predict_one).
  • Benchmarks: synthetic piecewise-stationary streams; compare vs. batch baselines.
  • Docs: example + tutorial notebook.

Questions: preference for single-τ estimator vs multi-τ; default regularization; placement under linear?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions