|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | + |
| 3 | +"""Tests scikit-learn's SGDClassifier converter.""" |
| 4 | + |
| 5 | +import sklearn |
| 6 | +import unittest |
| 7 | +import numpy as np |
| 8 | +import packaging.version as pv |
| 9 | +from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis |
| 10 | +from onnxruntime import __version__ as ort_version |
| 11 | +from onnx import __version__ as onnx_version |
| 12 | +from skl2onnx import convert_sklearn |
| 13 | +from skl2onnx.common.data_types import ( |
| 14 | + FloatTensorType, |
| 15 | + DoubleTensorType |
| 16 | +) |
| 17 | + |
| 18 | +from test_utils import ( |
| 19 | + dump_data_and_model, |
| 20 | + TARGET_OPSET |
| 21 | +) |
| 22 | + |
| 23 | +ort_version = ".".join(ort_version.split(".")[:2]) |
| 24 | +onnx_version = ".".join(onnx_version.split('.')[:2]) |
| 25 | + |
| 26 | + |
| 27 | +class TestQuadraticDiscriminantAnalysisConverter(unittest.TestCase): |
| 28 | + @unittest.skipIf(pv.Version(sklearn.__version__) < pv.Version('1.0'), |
| 29 | + reason="scikit-learn<1.0") |
| 30 | + @unittest.skipIf(pv.Version(onnx_version) < pv.Version('1.11'), |
| 31 | + reason="fails with onnx 1.10") |
| 32 | + def test_model_qda_2c2f_float(self): |
| 33 | + # 2 classes, 2 features |
| 34 | + X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) |
| 35 | + y = np.array([1, 1, 1, 2, 2, 2]) |
| 36 | + X_test = np.array([[-0.8, -1], [0.8, 1]]) |
| 37 | + |
| 38 | + skl_model = QuadraticDiscriminantAnalysis() |
| 39 | + skl_model.fit(X, y) |
| 40 | + |
| 41 | + onnx_model = convert_sklearn( |
| 42 | + skl_model, |
| 43 | + "scikit-learn QDA", |
| 44 | + [("input", FloatTensorType([None, X.shape[1]]))], |
| 45 | + target_opset=TARGET_OPSET) |
| 46 | + |
| 47 | + self.assertIsNotNone(onnx_model) |
| 48 | + dump_data_and_model(X_test.astype(np.float32), skl_model, onnx_model, |
| 49 | + basename="SklearnQDA_2c2f_Float") |
| 50 | + |
| 51 | + @unittest.skipIf(pv.Version(sklearn.__version__) < pv.Version('1.0'), |
| 52 | + reason="scikit-learn<1.0") |
| 53 | + @unittest.skipIf(pv.Version(onnx_version) < pv.Version('1.11'), |
| 54 | + reason="fails with onnx 1.10") |
| 55 | + def test_model_qda_2c3f_float(self): |
| 56 | + # 2 classes, 3 features |
| 57 | + X = np.array([[-1, -1, 0], [-2, -1, 1], [-3, -2, 0], |
| 58 | + [1, 1, 0], [2, 1, 1], [3, 2, 1]]) |
| 59 | + y = np.array([1, 1, 1, 2, 2, 2]) |
| 60 | + X_test = np.array([[-0.8, -1, 0], [-1, -1.6, 0], |
| 61 | + [1, 1.5, 1], [3.1, 2.1, 1]]) |
| 62 | + |
| 63 | + skl_model = QuadraticDiscriminantAnalysis() |
| 64 | + skl_model.fit(X, y) |
| 65 | + |
| 66 | + onnx_model = convert_sklearn( |
| 67 | + skl_model, |
| 68 | + "scikit-learn QDA", |
| 69 | + [("input", FloatTensorType([None, X.shape[1]]))], |
| 70 | + target_opset=TARGET_OPSET) |
| 71 | + |
| 72 | + self.assertIsNotNone(onnx_model) |
| 73 | + dump_data_and_model(X_test.astype(np.float32), skl_model, onnx_model, |
| 74 | + basename="SklearnQDA_2c3f_Float") |
| 75 | + |
| 76 | + @unittest.skipIf(pv.Version(sklearn.__version__) < pv.Version('1.0'), |
| 77 | + reason="scikit-learn<1.0") |
| 78 | + @unittest.skipIf(pv.Version(onnx_version) < pv.Version('1.11'), |
| 79 | + reason="fails with onnx 1.10") |
| 80 | + def test_model_qda_3c2f_float(self): |
| 81 | + # 3 classes, 2 features |
| 82 | + X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], |
| 83 | + [2, 1], [3, 2], [-1, 2], [-2, 3], [-2, 2]]) |
| 84 | + y = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]) |
| 85 | + X_test = np.array([[-0.8, -1], [0.8, 1], [-0.8, 1]]) |
| 86 | + |
| 87 | + skl_model = QuadraticDiscriminantAnalysis() |
| 88 | + skl_model.fit(X, y) |
| 89 | + |
| 90 | + onnx_model = convert_sklearn( |
| 91 | + skl_model, |
| 92 | + "scikit-learn QDA", |
| 93 | + [("input", FloatTensorType([None, X.shape[1]]))], |
| 94 | + target_opset=TARGET_OPSET) |
| 95 | + |
| 96 | + self.assertIsNotNone(onnx_model) |
| 97 | + dump_data_and_model(X_test.astype(np.float32), skl_model, onnx_model, |
| 98 | + basename="SklearnQDA_3c2f_Float") |
| 99 | + |
| 100 | + @unittest.skipIf(pv.Version(sklearn.__version__) < pv.Version('1.0'), |
| 101 | + reason="scikit-learn<1.0") |
| 102 | + @unittest.skipIf(pv.Version(onnx_version) < pv.Version('1.11'), |
| 103 | + reason="fails with onnx 1.10") |
| 104 | + def test_model_qda_2c2f_double(self): |
| 105 | + # 2 classes, 2 features |
| 106 | + X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], |
| 107 | + [2, 1], [3, 2]]).astype(np.double) |
| 108 | + y = np.array([1, 1, 1, 2, 2, 2]) |
| 109 | + X_test = np.array([[-0.8, -1], [0.8, 1]]) |
| 110 | + |
| 111 | + skl_model = QuadraticDiscriminantAnalysis() |
| 112 | + skl_model.fit(X, y) |
| 113 | + |
| 114 | + onnx_model = convert_sklearn( |
| 115 | + skl_model, |
| 116 | + "scikit-learn QDA", |
| 117 | + [("input", DoubleTensorType([None, X.shape[1]]))], |
| 118 | + target_opset=TARGET_OPSET, options={'zipmap': False}) |
| 119 | + |
| 120 | + self.assertIsNotNone(onnx_model) |
| 121 | + dump_data_and_model(X_test.astype(np.double), skl_model, onnx_model, |
| 122 | + basename="SklearnQDA_2c2f_Double") |
| 123 | + |
| 124 | + @unittest.skipIf(pv.Version(sklearn.__version__) < pv.Version('1.0'), |
| 125 | + reason="scikit-learn<1.0") |
| 126 | + @unittest.skipIf(pv.Version(onnx_version) < pv.Version('1.11'), |
| 127 | + reason="fails with onnx 1.10") |
| 128 | + def test_model_qda_2c3f_double(self): |
| 129 | + # 2 classes, 3 features |
| 130 | + X = np.array([[-1, -1, 0], [-2, -1, 1], [-3, -2, 0], |
| 131 | + [1, 1, 0], [2, 1, 1], [3, 2, 1]]).astype(np.double) |
| 132 | + y = np.array([1, 1, 1, 2, 2, 2]) |
| 133 | + X_test = np.array([[-0.8, -1, 0], [-1, -1.6, 0], |
| 134 | + [1, 1.5, 1], [3.1, 2.1, 1]]) |
| 135 | + |
| 136 | + skl_model = QuadraticDiscriminantAnalysis() |
| 137 | + skl_model.fit(X, y) |
| 138 | + |
| 139 | + onnx_model = convert_sklearn( |
| 140 | + skl_model, |
| 141 | + "scikit-learn QDA", |
| 142 | + [("input", DoubleTensorType([None, X.shape[1]]))], |
| 143 | + target_opset=TARGET_OPSET, options={'zipmap': False}) |
| 144 | + |
| 145 | + self.assertIsNotNone(onnx_model) |
| 146 | + dump_data_and_model(X_test.astype(np.double), skl_model, onnx_model, |
| 147 | + basename="SklearnQDA_2c3f_Double") |
| 148 | + |
| 149 | + @unittest.skipIf(pv.Version(sklearn.__version__) < pv.Version('1.0'), |
| 150 | + reason="scikit-learn<1.0") |
| 151 | + @unittest.skipIf(pv.Version(onnx_version) < pv.Version('1.11'), |
| 152 | + reason="fails with onnx 1.10") |
| 153 | + def test_model_qda_3c2f_double(self): |
| 154 | + # 3 classes, 2 features |
| 155 | + X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2], |
| 156 | + [-1, 2], [-2, 3], [-2, 2]]).astype(np.double) |
| 157 | + y = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]) |
| 158 | + X_test = np.array([[-0.8, -1], [0.8, 1], [-0.8, 1]]) |
| 159 | + |
| 160 | + skl_model = QuadraticDiscriminantAnalysis() |
| 161 | + skl_model.fit(X, y) |
| 162 | + |
| 163 | + onnx_model = convert_sklearn( |
| 164 | + skl_model, |
| 165 | + "scikit-learn QDA", |
| 166 | + [("input", DoubleTensorType([None, X.shape[1]]))], |
| 167 | + target_opset=TARGET_OPSET, options={'zipmap': False}) |
| 168 | + |
| 169 | + self.assertIsNotNone(onnx_model) |
| 170 | + dump_data_and_model(X_test.astype(np.double), skl_model, onnx_model, |
| 171 | + basename="SklearnQDA_3c2f_Double") |
| 172 | + |
| 173 | + |
| 174 | +if __name__ == "__main__": |
| 175 | + unittest.main(verbosity=3) |
0 commit comments