Description
Question
I'm converting a model made by google research
https://storage.googleapis.com/cloud-tpu-checkpoints/detection/projects/fvlm/r50.zip
after unzip,
python -m tf2onnx.convert --saved-model ./r50 --output model.onnx
it shows
2023-05-16 14:30:30,770 - WARNING - tf2onnx.tf_loader: '--tag' not specified for saved_model. Using --tag serve
2023-05-16 14:31:07,653 - INFO - tf2onnx.tf_loader: Signatures found in model: [serving_default].
2023-05-16 14:31:07,654 - WARNING - tf2onnx.tf_loader: '--signature_def' not specified, using first signature: serving_default
2023-05-16 14:31:07,654 - INFO - tf2onnx.tf_loader: Output names: ['detection_boxes', 'detection_classes', 'detection_masks', 'detection_scores', 'num_detections']
Segmentation fault (core dumped)
Can anyone try to convert it and give me some feedback? Thanks a lot.
Other info
saved_model_cli of this model:
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is:
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['image'] tensor_info:
dtype: DT_BFLOAT16
shape: (1, 1024, 1024, 3)
name: serving_default_image:0
inputs['queries'] tensor_info:
dtype: DT_FLOAT
shape: (1, 91, 1024)
name: serving_default_queries:0
The given SavedModel SignatureDef contains the following output(s):
outputs['detection_boxes'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100, 4)
name: StatefulPartitionedCall:0
outputs['detection_classes'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100)
name: StatefulPartitionedCall:1
outputs['detection_masks'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100, 28, 28)
name: StatefulPartitionedCall:2
outputs['detection_scores'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100)
name: StatefulPartitionedCall:3
outputs['num_detections'] tensor_info:
dtype: DT_INT32
shape: (1)
name: StatefulPartitionedCall:4
Method name is: tensorflow/serving/predict
The MetaGraph with tag set ['serve'] contains the following ops: {'PreventGradient', 'Neg', 'Reshape', 'StringJoin', 'Greater', 'ReadVariableOp', 'Transpose', 'StaticRegexFullMatch', 'Mul', 'RightShift', 'StridedSlice', 'BroadcastTo', 'XlaReduceWindow', 'Range', 'Pow', 'NoOp', 'LessEqual', 'LogicalOr', 'Equal', 'RealDiv', 'Less', 'LeftShift', 'Pack', 'MergeV2Checkpoints', 'Cast', 'Any', 'Sub', 'StatefulPartitionedCall', 'Sqrt', 'BitwiseXor', 'LogicalAnd', 'AddV2', 'RestoreV2', 'StopGradient', 'ConcatV2', 'ShardedFilename', 'AssignVariableOp', 'XlaDotV2', 'Exp', 'Select', 'Rsqrt', 'NotEqual', 'Max', 'SaveV2', 'StatelessWhile', 'Log', 'Abs', 'XlaGather', 'Sign', 'Maximum', 'VarHandleOp', 'SelectV2', 'Minimum', 'Const', 'GreaterEqual', 'BitwiseOr', 'XlaPad', 'Placeholder', 'BitwiseAnd', 'TopKV2', 'Floor', 'XlaConvV2', 'LogicalNot', 'Sum', 'Identity'}
Concrete Functions:
Function Name: '__call__'
Option #1
Callable with:
Argument #1
DType: dict
Value: {'text': TensorSpec(shape=(1, 91, 1024), dtype=tf.float32, name='queries'), 'image': TensorSpec(shape=(1, 1024, 1024, 3), dtype=tf.bfloat16, name='image')}