Skip to content

Segmentation fault (core dumped) when converting #2173

Open
@Amadeus-AI

Description

@Amadeus-AI

Question

I'm converting a model made by google research
https://storage.googleapis.com/cloud-tpu-checkpoints/detection/projects/fvlm/r50.zip

after unzip,
python -m tf2onnx.convert --saved-model ./r50 --output model.onnx

it shows
2023-05-16 14:30:30,770 - WARNING - tf2onnx.tf_loader: '--tag' not specified for saved_model. Using --tag serve
2023-05-16 14:31:07,653 - INFO - tf2onnx.tf_loader: Signatures found in model: [serving_default].
2023-05-16 14:31:07,654 - WARNING - tf2onnx.tf_loader: '--signature_def' not specified, using first signature: serving_default
2023-05-16 14:31:07,654 - INFO - tf2onnx.tf_loader: Output names: ['detection_boxes', 'detection_classes', 'detection_masks', 'detection_scores', 'num_detections']
Segmentation fault (core dumped)

Can anyone try to convert it and give me some feedback? Thanks a lot.

Other info

saved_model_cli of this model:

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is: 

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['image'] tensor_info:
        dtype: DT_BFLOAT16
        shape: (1, 1024, 1024, 3)
        name: serving_default_image:0
    inputs['queries'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 91, 1024)
        name: serving_default_queries:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['detection_boxes'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 100, 4)
        name: StatefulPartitionedCall:0
    outputs['detection_classes'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 100)
        name: StatefulPartitionedCall:1
    outputs['detection_masks'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 100, 28, 28)
        name: StatefulPartitionedCall:2
    outputs['detection_scores'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 100)
        name: StatefulPartitionedCall:3
    outputs['num_detections'] tensor_info:
        dtype: DT_INT32
        shape: (1)
        name: StatefulPartitionedCall:4
  Method name is: tensorflow/serving/predict
The MetaGraph with tag set ['serve'] contains the following ops: {'PreventGradient', 'Neg', 'Reshape', 'StringJoin', 'Greater', 'ReadVariableOp', 'Transpose', 'StaticRegexFullMatch', 'Mul', 'RightShift', 'StridedSlice', 'BroadcastTo', 'XlaReduceWindow', 'Range', 'Pow', 'NoOp', 'LessEqual', 'LogicalOr', 'Equal', 'RealDiv', 'Less', 'LeftShift', 'Pack', 'MergeV2Checkpoints', 'Cast', 'Any', 'Sub', 'StatefulPartitionedCall', 'Sqrt', 'BitwiseXor', 'LogicalAnd', 'AddV2', 'RestoreV2', 'StopGradient', 'ConcatV2', 'ShardedFilename', 'AssignVariableOp', 'XlaDotV2', 'Exp', 'Select', 'Rsqrt', 'NotEqual', 'Max', 'SaveV2', 'StatelessWhile', 'Log', 'Abs', 'XlaGather', 'Sign', 'Maximum', 'VarHandleOp', 'SelectV2', 'Minimum', 'Const', 'GreaterEqual', 'BitwiseOr', 'XlaPad', 'Placeholder', 'BitwiseAnd', 'TopKV2', 'Floor', 'XlaConvV2', 'LogicalNot', 'Sum', 'Identity'}

Concrete Functions:
  Function Name: '__call__'
    Option #1
      Callable with:
        Argument #1
          DType: dict
          Value: {'text': TensorSpec(shape=(1, 91, 1024), dtype=tf.float32, name='queries'), 'image': TensorSpec(shape=(1, 1024, 1024, 3), dtype=tf.bfloat16, name='image')} 

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionAn issue, pull request, or discussion needs more information

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions