Skip to content

ValueError: Graph has cycles #2246

Open
@ghost

Description

Describe the bug
2023-09-22 13:51:09.484965: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used. 2023-09-22 13:51:09.533379: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used. 2023-09-22 13:51:09.533992: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-09-22 13:51:10.343404: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT /home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/runpy.py:127: RuntimeWarning: 'tf2onnx.convert' found in sys.modules after import of package 'tf2onnx', but prior to execution of 'tf2onnx.convert'; this may result in unpredictable behaviour warn(RuntimeWarning(msg)) 2023-09-22 13:51:11,142 - WARNING - '--tag' not specified for saved_model. Using --tag serve 2023-09-22 13:51:26,497 - INFO - Fingerprint not found. Saved model loading will continue. 2023-09-22 13:51:26,572 - INFO - Signatures found in model: [serving_default]. 2023-09-22 13:51:26,572 - WARNING - '--signature_def' not specified, using first signature: serving_default 2023-09-22 13:51:26,576 - INFO - Output names: ['detection_attributes', 'detection_boxes', 'detection_classes', 'detection_masks', 'detection_scores', 'image_info', 'num_detections'] 2023-09-22 13:51:26,576 - WARNING - Could not search for non-variable resources. Concrete function internal representation may have changed. WARNING:tensorflow:Issue encountered when serializing global_step. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. This operation is not supported when eager execution is enabled. 2023-09-22 13:51:26,825 - WARNING - Issue encountered when serializing global_step. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. This operation is not supported when eager execution is enabled. WARNING:tensorflow:Issue encountered when serializing variables. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. This operation is not supported when eager execution is enabled. 2023-09-22 13:51:26,827 - WARNING - Issue encountered when serializing variables. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. This operation is not supported when eager execution is enabled. WARNING:tensorflow:Issue encountered when serializing trainable_variables. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. This operation is not supported when eager execution is enabled. 2023-09-22 13:51:26,827 - WARNING - Issue encountered when serializing trainable_variables. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. This operation is not supported when eager execution is enabled. 2023-09-22 13:51:26.829350: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0 2023-09-22 13:51:26.829510: I tensorflow/core/grappler/clusters/single_machine.cc:357] Starting new session 2023-09-22 13:51:51.039397: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0 2023-09-22 13:51:51.039630: I tensorflow/core/grappler/clusters/single_machine.cc:357] Starting new session 2023-09-22 13:52:00,923 - INFO - Using tensorflow=2.13.0, onnx=1.14.1, tf2onnx=1.15.1/37820d 2023-09-22 13:52:00,923 - INFO - Using opset <onnx, 15> 2023-09-22 13:52:05,401 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,405 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,408 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,409 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,410 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,411 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,412 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,413 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,414 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,414 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,415 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,416 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,420 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,424 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,428 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,428 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,430 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,434 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,436 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,440 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,442 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,444 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,448 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,451 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,454 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,460 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,471 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,475 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,476 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,480 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,486 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,497 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,501 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,502 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,506 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,508 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,512 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,516 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,520 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,524 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,525 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,529 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,531 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,532 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,536 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,538 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,545 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,546 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,550 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,551 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,552 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,553 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,555 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,556 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,558 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,561 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,563 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,567 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,568 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,570 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,571 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,574 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,578 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,581 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,582 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,583 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,587 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,588 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,591 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,603 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,607 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,611 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,613 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,615 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,616 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,620 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,624 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,625 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,626 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,627 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,631 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,632 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,633 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,634 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,637 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,640 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,650 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,651 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,652 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,656 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,657 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,663 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,674 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,680 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,691 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,696 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,698 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,701 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,703 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,707 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,712 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,716 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,721 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,726 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,727 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,729 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,732 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,732 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,733 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,735 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,738 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,742 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,743 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,745 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,746 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,748 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,751 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,755 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,756 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,758 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,762 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,762 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,763 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,765 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,770 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,776 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,779 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,780 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,782 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05,789 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:05.817106: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:375] MLIR V1 optimization pass is not enabled 2023-09-22 13:52:05,823 - INFO - Computed 1 values for constant folding 2023-09-22 13:52:05,843 - INFO - folding node using tf type=ExpandDims, name=ExpandDims 2023-09-22 13:52:05,856 - INFO - Computed 1 values for constant folding 2023-09-22 13:52:05,875 - INFO - folding node using tf type=ExpandDims, name=ExpandDims 2023-09-22 13:52:05,890 - INFO - Computed 1 values for constant folding 2023-09-22 13:52:05,920 - INFO - folding node using tf type=ExpandDims, name=ExpandDims 2023-09-22 13:52:05,941 - INFO - Computed 1 values for constant folding 2023-09-22 13:52:05,962 - INFO - folding node using tf type=ExpandDims, name=ExpandDims 2023-09-22 13:52:05,974 - INFO - Computed 1 values for constant folding 2023-09-22 13:52:05,994 - INFO - folding node using tf type=ExpandDims, name=ExpandDims 2023-09-22 13:52:05,996 - INFO - Computed 0 values for constant folding 2023-09-22 13:52:06,647 - INFO - Computed 2 values for constant folding 2023-09-22 13:52:09,881 - INFO - folding node using tf type=Tile, name=multilevel_crop_and_resize/Tile 2023-09-22 13:52:09,882 - INFO - folding node using tf type=Tile, name=multilevel_crop_and_resize_1/Tile Traceback (most recent call last): File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/convert.py", line 714, in <module> main() File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/convert.py", line 273, in main model_proto, _ = _convert_common( File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/convert.py", line 168, in _convert_common g = process_tf_graph(tf_graph, const_node_values=const_node_values, File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/tfonnx.py", line 464, in process_tf_graph g = process_graphs(main_g, subgraphs, custom_op_handlers, inputs_as_nchw, outputs_as_nchw, continue_on_error, File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/tfonnx.py", line 513, in process_graphs fg = process_parsed_graph(g, custom_op_handlers, inputs_as_nchw, outputs_as_nchw, continue_on_error, File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/tfonnx.py", line 641, in process_parsed_graph topological_sort(g, continue_on_error) File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/tfonnx.py", line 359, in topological_sort g.topological_sort(ops) File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/graph.py", line 1075, in topological_sort _push_stack(stack, node, in_stack) File "/home/studio-lab-user/.conda/envs/studiolab/lib/python3.9/site-packages/tf2onnx/graph.py", line 1032, in _push_stack raise ValueError('Graph has cycles, node.name=%r.' % ops[node].name) ValueError: Graph has cycles, node.name='while_1_loop'.

Urgency
Very urgent. 25.09.2023

System information
-" Ubuntu" "20.04.3 LTS (Focal Fossa)"

  • TensorFlow Version: 2.13.0
  • Python version: 3.10.12
  • ONNX version (if applicable, e.g. 1.11*): 1.14.1

To Reproduce

python -m tf2onnx.convert --saved-model ./x/ --output model.onnx

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugAn unexpected problem or unintended behaviorpending on user responseWaiting for more information or validation from user

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions