Skip to content

Commit b777db7

Browse files
Fix Dataprep Ingest Data Issue. (#1271)
* Fix Dataprep Ingest Data Issue. Trace: 1. The update of `langchain_huggingface.HuggingFaceEndpointEmbeddings` caused the wrong size of embedding vectors. 2. Wrong size vectors are wrongly saved into Redis database, and the indices are not created correctly. 3. The retriever can not retrieve data from Redis using index due to the reasons above. 4. Then the RAG seems `not work`, for the file uploaded can not be retrieved from database. Solution: Replace all of the `langchain_huggingface.HuggingFaceEndpointEmbeddings` to `langchain_community.embeddings.HuggingFaceInferenceAPIEmbeddings`, and modify related READMEs and scirpts. Related issue: - opea-project/GenAIExamples#1473 - opea-project/GenAIExamples#1482 --------- Signed-off-by: letonghan <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
1 parent 0df374b commit b777db7

19 files changed

+199
-59
lines changed

comps/dataprep/deployment/docker_compose/compose.yaml

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ services:
2828
DATAPREP_COMPONENT_NAME: "OPEA_DATAPREP_ELASTICSEARCH"
2929
ES_CONNECTION_STRING: ${ES_CONNECTION_STRING}
3030
INDEX_NAME: ${INDEX_NAME}
31-
TEI_ENDPOINT: ${TEI_ENDPOINT}
31+
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
3232
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
3333
restart: unless-stopped
3434
depends_on:
@@ -49,6 +49,7 @@ services:
4949
MILVUS_HOST: ${MILVUS_HOST}
5050
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
5151
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
52+
LOGFLAG: ${LOGFLAG}
5253
restart: unless-stopped
5354
depends_on:
5455
tei-embedding-serving:
@@ -161,7 +162,7 @@ services:
161162
QDRANT_HOST: ${QDRANT_HOST}
162163
QDRANT_PORT: ${QDRANT_PORT}
163164
COLLECTION_NAME: ${COLLECTION_NAME}
164-
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
165+
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
165166
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
166167
restart: unless-stopped
167168

comps/dataprep/src/README_elasticsearch.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --buil
5050
### 2.4 Run Docker with CLI (Option A)
5151

5252
```bash
53-
docker run --name="dataprep-elasticsearch" -p 6011:6011 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e ES_CONNECTION_STRING=$ES_CONNECTION_STRING -e INDEX_NAME=$INDEX_NAME -e TEI_ENDPOINT=$TEI_ENDPOINT -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_ELASTICSEARCH" opea/dataprep:latest
53+
docker run --name="dataprep-elasticsearch" -p 6011:6011 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e ES_CONNECTION_STRING=$ES_CONNECTION_STRING -e INDEX_NAME=$INDEX_NAME -e TEI_EMBEDDING_ENDPOINT=$TEI_EMBEDDING_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_ELASTICSEARCH" opea/dataprep:latest
5454
```
5555

5656
### 2.5 Run with Docker Compose (Option B)

comps/dataprep/src/README_milvus.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,7 @@ export MILVUS_HOST=${your_milvus_host_ip}
2525
export MILVUS_PORT=19530
2626
export COLLECTION_NAME=${your_collection_name}
2727
export TEI_EMBEDDING_ENDPOINT=${your_embedding_endpoint}
28+
export HUGGINGFACEHUB_API_TOKEN=${your_huggingface_api_token}
2829
```
2930

3031
### 1.4 Start TEI Embedding Service
@@ -70,13 +71,15 @@ docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --buil
7071

7172
```bash
7273
export TEI_EMBEDDING_ENDPOINT="http://localhost:$your_port"
74+
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
75+
export EMBEDDING_MODEL_ID=${your_embedding_model_id}
7376
export MILVUS_HOST=${your_host_ip}
7477
```
7578

7679
### 2.3 Run Docker with CLI (Option A)
7780

7881
```bash
79-
docker run -d --name="dataprep-milvus-server" -p 6010:6010 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e TEI_EMBEDDING_ENDPOINT=${TEI_EMBEDDING_ENDPOINT} -e MILVUS_HOST=${MILVUS_HOST} -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_MILVUS" opea/dataprep:latest
82+
docker run -d --name="dataprep-milvus-server" -p 6010:6010 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e TEI_EMBEDDING_ENDPOINT=${TEI_EMBEDDING_ENDPOINT} -e MILVUS_HOST=${MILVUS_HOST} -e HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_MILVUS" opea/dataprep:latest
8083
```
8184

8285
### 2.4 Run with Docker Compose (Option B)

comps/dataprep/src/README_opensearch.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ curl localhost:$your_port/embed \
5151
After checking that it works, set up environment variables.
5252

5353
```bash
54-
export TEI_ENDPOINT="http://localhost:$your_port"
54+
export TEI_EMBEDDING_ENDPOINT="http://localhost:$your_port"
5555
```
5656

5757
### 1.4 Start Document Preparation Microservice for OpenSearch with Python Script
@@ -75,7 +75,7 @@ Please refer to this [readme](../../third_parties/opensearch/src/README.md).
7575

7676
```bash
7777
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
78-
export TEI_ENDPOINT="http://${your_ip}:6006"
78+
export TEI_EMBEDDING_ENDPOINT="http://${your_ip}:6006"
7979
export OPENSEARCH_URL="http://${your_ip}:9200"
8080
export INDEX_NAME=${your_index_name}
8181
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
@@ -97,7 +97,7 @@ docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --buil
9797
- option 1: Start single-process version (for processing up to 10 files)
9898

9999
```bash
100-
docker run -d --name="dataprep-opensearch-server" -p 6007:6007 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e OPENSEARCH_URL=$OPENSEARCH_URL -e INDEX_NAME=$INDEX_NAME -e TEI_ENDPOINT=$TEI_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_OPENSEARCH" opea/dataprep:latest
100+
docker run -d --name="dataprep-opensearch-server" -p 6007:6007 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e OPENSEARCH_URL=$OPENSEARCH_URL -e INDEX_NAME=$INDEX_NAME -e EMBED_MODEL=${EMBED_MODEL} -e TEI_EMBEDDING_ENDPOINT=$TEI_EMBEDDING_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_OPENSEARCH" opea/dataprep:latest
101101
```
102102

103103
### 2.5 Run with Docker Compose (Option B - deprecated, will move to genAIExample in future)

comps/dataprep/src/README_pgvector.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,8 @@ Please refer to this [readme](../../third_parties/pgvector/src/README.md).
3838
```bash
3939
export PG_CONNECTION_STRING=postgresql+psycopg2://testuser:testpwd@${your_ip}:5432/vectordb
4040
export INDEX_NAME=${your_index_name}
41+
export TEI_EMBEDDING_ENDPOINT=${your_tei_embedding_endpoint}
42+
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
4143
```
4244

4345
### 2.3 Build Docker Image
@@ -50,7 +52,7 @@ docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --buil
5052
### 2.4 Run Docker with CLI (Option A)
5153

5254
```bash
53-
docker run --name="dataprep-pgvector" -p 6007:6007 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e PG_CONNECTION_STRING=$PG_CONNECTION_STRING -e INDEX_NAME=$INDEX_NAME -e TEI_ENDPOINT=$TEI_ENDPOINT -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_PGVECTOR" opea/dataprep:latest
55+
docker run --name="dataprep-pgvector" -p 6007:6007 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e PG_CONNECTION_STRING=$PG_CONNECTION_STRING -e INDEX_NAME=$INDEX_NAME -e EMBED_MODEL=${EMBED_MODEL} -e TEI_EMBEDDING_ENDPOINT=$TEI_EMBEDDING_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_PGVECTOR" opea/dataprep:latest
5456
```
5557

5658
### 2.5 Run with Docker Compose (Option B)

comps/dataprep/src/README_redis.md

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -95,8 +95,7 @@ Please refer to this [readme](../../third_parties/redis/src/README.md).
9595
### 2.2 Setup Environment Variables
9696

9797
```bash
98-
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
99-
export TEI_ENDPOINT="http://${your_ip}:6006"
98+
export TEI_EMBEDDING_ENDPOINT="http://${your_ip}:6006"
10099
export REDIS_URL="redis://${your_ip}:6379"
101100
export INDEX_NAME=${your_index_name}
102101
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
@@ -112,7 +111,7 @@ docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --buil
112111
### 2.4 Run Docker with CLI (Option A)
113112

114113
```bash
115-
docker run -d --name="dataprep-redis-server" -p 6007:5000 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e REDIS_URL=$REDIS_URL -e INDEX_NAME=$INDEX_NAME -e TEI_ENDPOINT=$TEI_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN opea/dataprep:latest
114+
docker run -d --name="dataprep-redis-server" -p 6007:5000 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e REDIS_URL=$REDIS_URL -e INDEX_NAME=$INDEX_NAME -e TEI_EMBEDDING_ENDPOINT=$TEI_EMBEDDING_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN opea/dataprep:latest
116115
```
117116

118117
### 2.5 Run with Docker Compose (Option B - deprecated, will move to genAIExample in future)

comps/dataprep/src/README_vdms.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,8 @@ export http_proxy=${your_http_proxy}
6969
export https_proxy=${your_http_proxy}
7070
export VDMS_HOST=${host_ip}
7171
export VDMS_PORT=55555
72-
export TEI_ENDPOINT=${your_tei_endpoint}
72+
export TEI_EMBEDDING_ENDPOINT=${your_tei_endpoint}
73+
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
7374
export COLLECTION_NAME=${your_collection_name}
7475
export SEARCH_ENGINE="FaissFlat"
7576
export DISTANCE_STRATEGY="L2"
@@ -89,7 +90,8 @@ Start single-process version (for 1-10 files processing)
8990

9091
```bash
9192
docker run -d --name="dataprep-vdms-server" -p 6007:6007 --runtime=runc --ipc=host \
92-
-e http_proxy=$http_proxy -e https_proxy=$https_proxy -e TEI_ENDPOINT=$TEI_ENDPOINT \
93+
-e http_proxy=$http_proxy -e https_proxy=$https_proxy \
94+
-e TEI_EMBEDDING_ENDPOINT=$TEI_EMBEDDING_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} \
9395
-e COLLECTION_NAME=$COLLECTION_NAME -e VDMS_HOST=$VDMS_HOST -e VDMS_PORT=$VDMS_PORT \
9496
-e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_VDMS" opea/dataprep:latest
9597
```

comps/dataprep/src/integrations/elasticsearch.py

Lines changed: 24 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -9,10 +9,9 @@
99
from elasticsearch import Elasticsearch
1010
from fastapi import Body, File, Form, HTTPException, UploadFile
1111
from langchain.text_splitter import HTMLHeaderTextSplitter, RecursiveCharacterTextSplitter
12-
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
12+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
1313
from langchain_core.documents import Document
1414
from langchain_elasticsearch import ElasticsearchStore
15-
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
1615

1716
from comps import CustomLogger, DocPath, OpeaComponent, OpeaComponentRegistry, ServiceType
1817
from comps.dataprep.src.utils import (
@@ -37,7 +36,9 @@
3736
EMBED_MODEL = os.getenv("EMBED_MODEL", "BAAI/bge-base-en-v1.5")
3837

3938
# TEI Embedding endpoints
40-
TEI_ENDPOINT = os.getenv("TEI_ENDPOINT", "")
39+
TEI_EMBEDDING_ENDPOINT = os.getenv("TEI_EMBEDDING_ENDPOINT", "")
40+
# Huggingface API token for TEI embedding endpoint
41+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
4142

4243
# Vector Index Configuration
4344
INDEX_NAME = os.getenv("INDEX_NAME", "rag-elastic")
@@ -77,15 +78,31 @@ def create_index(self) -> None:
7778
if not self.es_client.indices.exists(index=INDEX_NAME):
7879
self.es_client.indices.create(index=INDEX_NAME)
7980

80-
def get_embedder(self) -> Union[HuggingFaceEndpointEmbeddings, HuggingFaceBgeEmbeddings]:
81+
def get_embedder(self) -> Union[HuggingFaceInferenceAPIEmbeddings, HuggingFaceBgeEmbeddings]:
8182
"""Obtain required Embedder."""
82-
if TEI_ENDPOINT:
83-
return HuggingFaceEndpointEmbeddings(model=TEI_ENDPOINT)
83+
if TEI_EMBEDDING_ENDPOINT:
84+
if not HUGGINGFACEHUB_API_TOKEN:
85+
raise HTTPException(
86+
status_code=400,
87+
detail="You MUST offer the `HUGGINGFACEHUB_API_TOKEN` and the `EMBED_MODEL` when using `TEI_EMBEDDING_ENDPOINT`.",
88+
)
89+
import requests
90+
91+
response = requests.get(TEI_EMBEDDING_ENDPOINT + "/info")
92+
if response.status_code != 200:
93+
raise HTTPException(
94+
status_code=400, detail=f"TEI embedding endpoint {TEI_EMBEDDING_ENDPOINT} is not available."
95+
)
96+
model_id = response.json()["model_id"]
97+
embedder = HuggingFaceInferenceAPIEmbeddings(
98+
api_key=HUGGINGFACEHUB_API_TOKEN, model_name=model_id, api_url=TEI_EMBEDDING_ENDPOINT
99+
)
100+
return embedder
84101
else:
85102
return HuggingFaceBgeEmbeddings(model_name=EMBED_MODEL)
86103

87104
def get_elastic_store(
88-
self, embedder: Union[HuggingFaceEndpointEmbeddings, HuggingFaceBgeEmbeddings]
105+
self, embedder: Union[HuggingFaceInferenceAPIEmbeddings, HuggingFaceBgeEmbeddings]
89106
) -> ElasticsearchStore:
90107
"""Get Elasticsearch vector store."""
91108
return ElasticsearchStore(index_name=INDEX_NAME, embedding=embedder, es_connection=self.es_client)

comps/dataprep/src/integrations/milvus.py

Lines changed: 27 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010

1111
from fastapi import Body, File, Form, HTTPException, UploadFile
1212
from langchain.text_splitter import RecursiveCharacterTextSplitter
13-
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceHubEmbeddings, OpenAIEmbeddings
13+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings, OpenAIEmbeddings
1414
from langchain_core.documents import Document
1515
from langchain_milvus.vectorstores import Milvus
1616
from langchain_text_splitters import HTMLHeaderTextSplitter
@@ -36,8 +36,11 @@
3636
# Local Embedding model
3737
LOCAL_EMBEDDING_MODEL = os.getenv("LOCAL_EMBEDDING_MODEL", "maidalun1020/bce-embedding-base_v1")
3838
# TEI configuration
39-
TEI_EMBEDDING_MODEL = os.environ.get("TEI_EMBEDDING_MODEL", "/home/user/bge-large-zh-v1.5")
39+
EMBED_MODEL = os.environ.get("EMBED_MODEL", "BAAI/bge-base-en-v1.5")
4040
TEI_EMBEDDING_ENDPOINT = os.environ.get("TEI_EMBEDDING_ENDPOINT", "")
41+
# Huggingface API token for TEI embedding endpoint
42+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
43+
4144
# MILVUS configuration
4245
MILVUS_HOST = os.getenv("MILVUS_HOST", "localhost")
4346
MILVUS_PORT = int(os.getenv("MILVUS_PORT", 19530))
@@ -75,7 +78,7 @@ def ingest_chunks_to_milvus(embeddings, file_name: str, chunks: List):
7578
except Exception as e:
7679
if logflag:
7780
logger.info(f"[ ingest chunks ] fail to ingest chunks into Milvus. error: {e}")
78-
raise HTTPException(status_code=500, detail=f"Fail to store chunks of file {file_name}.")
81+
raise HTTPException(status_code=500, detail=f"Fail to store chunks of file {file_name}: {e}")
7982

8083
if logflag:
8184
logger.info(f"[ ingest chunks ] Docs ingested file {file_name} to Milvus collection {COLLECTION_NAME}.")
@@ -189,7 +192,23 @@ def _initialize_embedder(self):
189192
# create embeddings using TEI endpoint service
190193
if logflag:
191194
logger.info(f"[ milvus embedding ] TEI_EMBEDDING_ENDPOINT:{TEI_EMBEDDING_ENDPOINT}")
192-
embeddings = HuggingFaceHubEmbeddings(model=TEI_EMBEDDING_ENDPOINT)
195+
if not HUGGINGFACEHUB_API_TOKEN:
196+
raise HTTPException(
197+
status_code=400,
198+
detail="You MUST offer the `HUGGINGFACEHUB_API_TOKEN` when using `TEI_EMBEDDING_ENDPOINT`.",
199+
)
200+
import requests
201+
202+
response = requests.get(TEI_EMBEDDING_ENDPOINT + "/info")
203+
if response.status_code != 200:
204+
raise HTTPException(
205+
status_code=400, detail=f"TEI embedding endpoint {TEI_EMBEDDING_ENDPOINT} is not available."
206+
)
207+
model_id = response.json()["model_id"]
208+
# create embeddings using TEI endpoint service
209+
embeddings = HuggingFaceInferenceAPIEmbeddings(
210+
api_key=HUGGINGFACEHUB_API_TOKEN, model_name=model_id, api_url=TEI_EMBEDDING_ENDPOINT
211+
)
193212
else:
194213
# create embeddings using local embedding model
195214
if logflag:
@@ -274,7 +293,7 @@ async def ingest_files(
274293
search_res = search_by_file(my_milvus.col, encode_file)
275294
except Exception as e:
276295
raise HTTPException(
277-
status_code=500, detail=f"Failed when searching in Milvus db for file {file.filename}."
296+
status_code=500, detail=f"Failed when searching in Milvus db for file {file.filename}: {e}"
278297
)
279298
if len(search_res) > 0:
280299
if logflag:
@@ -319,7 +338,7 @@ async def ingest_files(
319338
search_res = search_by_file(my_milvus.col, encoded_link + ".txt")
320339
except Exception as e:
321340
raise HTTPException(
322-
status_code=500, detail=f"Failed when searching in Milvus db for link {link}."
341+
status_code=500, detail=f"Failed when searching in Milvus db for link {link}: {e}"
323342
)
324343
if len(search_res) > 0:
325344
if logflag:
@@ -375,7 +394,7 @@ async def get_files(self):
375394
try:
376395
all_data = search_all(my_milvus.col)
377396
except Exception as e:
378-
raise HTTPException(status_code=500, detail="Failed when searching in Milvus db for all files.")
397+
raise HTTPException(status_code=500, detail=f"Failed when searching in Milvus db for all files: {e}")
379398

380399
# return [] if no data in db
381400
if len(all_data) == 0:
@@ -422,8 +441,7 @@ async def delete_files(self, file_path: str = Body(..., embed=True)):
422441
except Exception as e:
423442
if logflag:
424443
logger.info(f"[ milvus delete ] {e}. Fail to delete {upload_folder}.")
425-
raise HTTPException(status_code=500, detail=f"Fail to delete {upload_folder}.")
426-
444+
raise HTTPException(status_code=500, detail=f"Fail to delete {upload_folder}: {e}")
427445
if logflag:
428446
logger.info("[ milvus delete ] successfully delete all files.")
429447

comps/dataprep/src/integrations/neo4j_langchain.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,10 +34,9 @@
3434
NEO4J_USERNAME = os.getenv("NEO4J_USERNAME", "neo4j")
3535
NEO4J_PASSWORD = os.getenv("NEO4J_PASSWORD", "test")
3636

37-
# LLM/Embedding endpoints
37+
# LLM endpoints
3838
TGI_LLM_ENDPOINT = os.getenv("TGI_LLM_ENDPOINT", "http://localhost:8080")
3939
TGI_LLM_ENDPOINT_NO_RAG = os.getenv("TGI_LLM_ENDPOINT_NO_RAG", "http://localhost:8081")
40-
TEI_EMBEDDING_ENDPOINT = os.getenv("TEI_ENDPOINT")
4140
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
4241

4342

0 commit comments

Comments
 (0)