Skip to content

Commit bc75c9d

Browse files
authored
bump version to v1.13.1 (#2613)
1 parent 1e79b48 commit bc75c9d

File tree

15 files changed

+51
-51
lines changed

15 files changed

+51
-51
lines changed

CMakeLists.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ if (NOT CMAKE_BUILD_TYPE)
99
endif ()
1010

1111
cmake_minimum_required(VERSION 3.14)
12-
project(MMDeploy VERSION 1.3.0)
12+
project(MMDeploy VERSION 1.3.1)
1313

1414
set(CMAKE_CXX_STANDARD 17)
1515

csrc/mmdeploy/apis/csharp/README.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -33,14 +33,14 @@ There are two methods to build the nuget package.
3333

3434
(*option 1*) Use the command.
3535

36-
If your environment is well prepared, you can just go to the `csrc\apis\csharp` folder, open a terminal and type the following command, the nupkg will be built in `csrc\apis\csharp\MMDeploy\bin\Release\MMDeployCSharp.1.3.0.nupkg`.
36+
If your environment is well prepared, you can just go to the `csrc\apis\csharp` folder, open a terminal and type the following command, the nupkg will be built in `csrc\apis\csharp\MMDeploy\bin\Release\MMDeployCSharp.1.3.1.nupkg`.
3737

3838
```shell
39-
dotnet build --configuration Release -p:Version=1.3.0
39+
dotnet build --configuration Release -p:Version=1.3.1
4040
```
4141

4242
(*option 2*) Open MMDeploy.sln && Build.
4343

44-
You can set the package-version through `Properties -> Package Version`. The default version is 1.3.0 if you don't set it.
44+
You can set the package-version through `Properties -> Package Version`. The default version is 1.3.1 if you don't set it.
4545

4646
If you encounter missing dependencies, follow the instructions for MSVC.

demo/csharp/image_classification/image_classification.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
</PropertyGroup>
1515

1616
<ItemGroup>
17-
<PackageReference Include="MMDeployCSharp" Version="1.3.0" />
17+
<PackageReference Include="MMDeployCSharp" Version="1.3.1" />
1818
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
1919
<PackageReference Include="OpenCvSharp4.Extensions" Version="4.5.5.20211231" />
2020
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />

demo/csharp/image_restorer/image_restorer.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
</PropertyGroup>
1515

1616
<ItemGroup>
17-
<PackageReference Include="MMDeployCSharp" Version="1.3.0" />
17+
<PackageReference Include="MMDeployCSharp" Version="1.3.1" />
1818
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
1919
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
2020
</ItemGroup>

demo/csharp/image_segmentation/image_segmentation.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
</PropertyGroup>
1515

1616
<ItemGroup>
17-
<PackageReference Include="MMDeployCSharp" Version="1.3.0" />
17+
<PackageReference Include="MMDeployCSharp" Version="1.3.1" />
1818
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
1919
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
2020
</ItemGroup>

demo/csharp/object_detection/object_detection.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
</PropertyGroup>
1515

1616
<ItemGroup>
17-
<PackageReference Include="MMDeployCSharp" Version="1.3.0" />
17+
<PackageReference Include="MMDeployCSharp" Version="1.3.1" />
1818
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
1919
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
2020
</ItemGroup>

demo/csharp/ocr_detection/ocr_detection.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
</PropertyGroup>
1515

1616
<ItemGroup>
17-
<PackageReference Include="MMDeployCSharp" Version="1.3.0" />
17+
<PackageReference Include="MMDeployCSharp" Version="1.3.1" />
1818
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
1919
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
2020
</ItemGroup>

demo/csharp/ocr_recognition/ocr_recognition.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
</PropertyGroup>
1515

1616
<ItemGroup>
17-
<PackageReference Include="MMDeployCSharp" Version="1.3.0" />
17+
<PackageReference Include="MMDeployCSharp" Version="1.3.1" />
1818
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
1919
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
2020
</ItemGroup>

demo/csharp/pose_detection/pose_detection.csproj

+1-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
</PropertyGroup>
1515

1616
<ItemGroup>
17-
<PackageReference Include="MMDeployCSharp" Version="1.3.0" />
17+
<PackageReference Include="MMDeployCSharp" Version="1.3.1" />
1818
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
1919
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
2020
</ItemGroup>

docs/en/02-how-to-run/prebuilt_package_windows.md

+13-13
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121

2222
______________________________________________________________________
2323

24-
This tutorial takes `mmdeploy-1.3.0-windows-amd64.zip` and `mmdeploy-1.3.0-windows-amd64-cuda11.8.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference.
24+
This tutorial takes `mmdeploy-1.3.1-windows-amd64.zip` and `mmdeploy-1.3.1-windows-amd64-cuda11.8.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference.
2525

2626
The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.
2727

@@ -81,8 +81,8 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
8181
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
8282

8383
```bash
84-
pip install mmdeploy==1.3.0
85-
pip install mmdeploy-runtime==1.3.0
84+
pip install mmdeploy==1.3.1
85+
pip install mmdeploy-runtime==1.3.1
8686
```
8787

8888
:point_right: If you have installed it before, please uninstall it first.
@@ -100,7 +100,7 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
100100
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
101101
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`.
102102

103-
8. Download SDK C/cpp Library mmdeploy-1.3.0-windows-amd64.zip
103+
8. Download SDK C/cpp Library mmdeploy-1.3.1-windows-amd64.zip
104104

105105
### TensorRT
106106

@@ -109,8 +109,8 @@ In order to use `TensorRT` backend, you should also do the following steps.
109109
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
110110

111111
```bash
112-
pip install mmdeploy==1.3.0
113-
pip install mmdeploy-runtime-gpu==1.3.0
112+
pip install mmdeploy==1.3.1
113+
pip install mmdeploy-runtime-gpu==1.3.1
114114
```
115115

116116
:point_right: If you have installed it before, please uninstall it first.
@@ -129,7 +129,7 @@ In order to use `TensorRT` backend, you should also do the following steps.
129129

130130
7. Install pycuda by `pip install pycuda`
131131

132-
8. Download SDK C/cpp Library mmdeploy-1.3.0-windows-amd64-cuda11.8.zip
132+
8. Download SDK C/cpp Library mmdeploy-1.3.1-windows-amd64-cuda11.8.zip
133133

134134
## Model Convert
135135

@@ -141,7 +141,7 @@ After preparation work, the structure of the current working directory should be
141141

142142
```
143143
..
144-
|-- mmdeploy-1.3.0-windows-amd64
144+
|-- mmdeploy-1.3.1-windows-amd64
145145
|-- mmpretrain
146146
|-- mmdeploy
147147
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -189,7 +189,7 @@ After installation of mmdeploy-tensorrt prebuilt package, the structure of the c
189189

190190
```
191191
..
192-
|-- mmdeploy-1.3.0-windows-amd64-cuda11.8
192+
|-- mmdeploy-1.3.1-windows-amd64-cuda11.8
193193
|-- mmpretrain
194194
|-- mmdeploy
195195
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -252,8 +252,8 @@ The structure of current working directory:
252252

253253
```
254254
.
255-
|-- mmdeploy-1.3.0-windows-amd64
256-
|-- mmdeploy-1.3.0-windows-amd64-cuda11.8
255+
|-- mmdeploy-1.3.1-windows-amd64
256+
|-- mmdeploy-1.3.1-windows-amd64-cuda11.8
257257
|-- mmpretrain
258258
|-- mmdeploy
259259
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -324,7 +324,7 @@ The following describes how to use the SDK's C API for inference
324324

325325
It is recommended to use `CMD` here.
326326

327-
Under `mmdeploy-1.3.0-windows-amd64\\example\\cpp\\build\\Release` directory:
327+
Under `mmdeploy-1.3.1-windows-amd64\\example\\cpp\\build\\Release` directory:
328328

329329
```
330330
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG
@@ -344,7 +344,7 @@ The following describes how to use the SDK's C API for inference
344344

345345
It is recommended to use `CMD` here.
346346

347-
Under `mmdeploy-1.3.0-windows-amd64-cuda11.8\\example\\cpp\\build\\Release` directory
347+
Under `mmdeploy-1.3.1-windows-amd64-cuda11.8\\example\\cpp\\build\\Release` directory
348348

349349
```
350350
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG

docs/en/get_started.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -118,14 +118,14 @@ Take the latest precompiled package as example, you can install it as follows:
118118

119119
```shell
120120
# 1. install MMDeploy model converter
121-
pip install mmdeploy==1.3.0
121+
pip install mmdeploy==1.3.1
122122

123123
# 2. install MMDeploy sdk inference
124124
# you can install one to install according whether you need gpu inference
125125
# 2.1 support onnxruntime
126-
pip install mmdeploy-runtime==1.3.0
126+
pip install mmdeploy-runtime==1.3.1
127127
# 2.2 support onnxruntime-gpu, tensorrt
128-
pip install mmdeploy-runtime-gpu==1.3.0
128+
pip install mmdeploy-runtime-gpu==1.3.1
129129

130130
# 3. install inference engine
131131
# 3.1 install TensorRT
@@ -230,9 +230,9 @@ result = inference_model(
230230
You can directly run MMDeploy demo programs in the precompiled package to get inference results.
231231

232232
```shell
233-
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.3.0/mmdeploy-1.3.0-linux-x86_64-cuda11.8.tar.gz
234-
tar xf mmdeploy-1.3.0-linux-x86_64-cuda11.8
235-
cd mmdeploy-1.3.0-linux-x86_64-cuda11.8
233+
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.3.1/mmdeploy-1.3.1-linux-x86_64-cuda11.8.tar.gz
234+
tar xf mmdeploy-1.3.1-linux-x86_64-cuda11.8
235+
cd mmdeploy-1.3.1-linux-x86_64-cuda11.8
236236
# run python demo
237237
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
238238
# run C/C++ demo

docs/zh_cn/02-how-to-run/prebuilt_package_windows.md

+13-13
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ ______________________________________________________________________
2323

2424
目前,`MMDeploy``Windows`平台下提供`cpu`以及`cuda`两种Device的预编译包,其中`cpu`版支持使用onnxruntime cpu进行推理,`cuda`版支持使用onnxruntime-gpu以及tensorrt进行推理,可以从[Releases](https://github.com/open-mmlab/mmdeploy/releases)获取。。
2525

26-
本篇教程以`mmdeploy-1.3.0-windows-amd64.zip``mmdeploy-1.3.0-windows-amd64-cuda11.8.zip`为例,展示预编译包的使用方法。
26+
本篇教程以`mmdeploy-1.3.1-windows-amd64.zip``mmdeploy-1.3.1-windows-amd64-cuda11.8.zip`为例,展示预编译包的使用方法。
2727

2828
为了方便使用者快速上手,本教程以分类模型(mmpretrain)为例,展示两种预编译包的使用方法。
2929

@@ -89,8 +89,8 @@ ______________________________________________________________________
8989
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`(模型推理Python API)的预编译包
9090

9191
```bash
92-
pip install mmdeploy==1.3.0
93-
pip install mmdeploy-runtime==1.3.0
92+
pip install mmdeploy==1.3.1
93+
pip install mmdeploy-runtime==1.3.1
9494
```
9595

9696
:point_right: 如果之前安装过,需要先卸载后再安装。
@@ -108,7 +108,7 @@ ______________________________________________________________________
108108
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
109109
:exclamation: 重启powershell让环境变量生效,可以通过 echo $env:PATH 来检查是否设置成功。
110110

111-
8. 下载 SDK C/cpp Library mmdeploy-1.3.0-windows-amd64.zip
111+
8. 下载 SDK C/cpp Library mmdeploy-1.3.1-windows-amd64.zip
112112

113113
### TensorRT
114114

@@ -117,8 +117,8 @@ ______________________________________________________________________
117117
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`(模型推理Python API)的预编译包
118118

119119
```bash
120-
pip install mmdeploy==1.3.0
121-
pip install mmdeploy-runtime-gpu==1.3.0
120+
pip install mmdeploy==1.3.1
121+
pip install mmdeploy-runtime-gpu==1.3.1
122122
```
123123

124124
:point_right: 如果之前安装过,需要先卸载后再安装
@@ -137,7 +137,7 @@ ______________________________________________________________________
137137

138138
7. 安装pycuda `pip install pycuda`
139139

140-
8. 下载 SDK C/cpp Library mmdeploy-1.3.0-windows-amd64-cuda11.8.zip
140+
8. 下载 SDK C/cpp Library mmdeploy-1.3.1-windows-amd64-cuda11.8.zip
141141

142142
## 模型转换
143143

@@ -149,7 +149,7 @@ ______________________________________________________________________
149149

150150
```
151151
..
152-
|-- mmdeploy-1.3.0-windows-amd64
152+
|-- mmdeploy-1.3.1-windows-amd64
153153
|-- mmpretrain
154154
|-- mmdeploy
155155
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -197,7 +197,7 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
197197

198198
```
199199
..
200-
|-- mmdeploy-1.3.0-windows-amd64-cuda11.8
200+
|-- mmdeploy-1.3.1-windows-amd64-cuda11.8
201201
|-- mmpretrain
202202
|-- mmdeploy
203203
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -260,8 +260,8 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
260260

261261
```
262262
.
263-
|-- mmdeploy-1.3.0-windows-amd64
264-
|-- mmdeploy-1.3.0-windows-amd64-cuda11.8
263+
|-- mmdeploy-1.3.1-windows-amd64
264+
|-- mmdeploy-1.3.1-windows-amd64-cuda11.8
265265
|-- mmpretrain
266266
|-- mmdeploy
267267
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@@ -340,7 +340,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
340340

341341
这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗
342342

343-
在mmdeploy-1.3.0-windows-amd64\\example\\cpp\\build\\Release目录下:
343+
在mmdeploy-1.3.1-windows-amd64\\example\\cpp\\build\\Release目录下:
344344

345345
```
346346
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG
@@ -360,7 +360,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
360360

361361
这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗
362362

363-
在mmdeploy-1.3.0-windows-amd64-cuda11.8\\example\\cpp\\build\\Release目录下:
363+
在mmdeploy-1.3.1-windows-amd64-cuda11.8\\example\\cpp\\build\\Release目录下:
364364

365365
```
366366
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG

docs/zh_cn/get_started.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -113,14 +113,14 @@ mim install "mmcv>=2.0.0rc2"
113113

114114
```shell
115115
# 1. 安装 MMDeploy 模型转换工具(含trt/ort自定义算子)
116-
pip install mmdeploy==1.3.0
116+
pip install mmdeploy==1.3.1
117117

118118
# 2. 安装 MMDeploy SDK推理工具
119119
# 根据是否需要GPU推理可任选其一进行下载安装
120120
# 2.1 支持 onnxruntime 推理
121-
pip install mmdeploy-runtime==1.3.0
121+
pip install mmdeploy-runtime==1.3.1
122122
# 2.2 支持 onnxruntime-gpu tensorrt 推理
123-
pip install mmdeploy-runtime-gpu==1.3.0
123+
pip install mmdeploy-runtime-gpu==1.3.1
124124

125125
# 3. 安装推理引擎
126126
# 3.1 安装推理引擎 TensorRT
@@ -223,10 +223,10 @@ result = inference_model(
223223
你可以直接运行预编译包中的 demo 程序,输入 SDK Model 和图像,进行推理,并查看推理结果。
224224

225225
```shell
226-
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.3.0/mmdeploy-1.3.0-linux-x86_64-cuda11.8.tar.gz
227-
tar xf mmdeploy-1.3.0-linux-x86_64-cuda11.8
226+
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.3.1/mmdeploy-1.3.1-linux-x86_64-cuda11.8.tar.gz
227+
tar xf mmdeploy-1.3.1-linux-x86_64-cuda11.8
228228

229-
cd mmdeploy-1.3.0-linux-x86_64-cuda11.8
229+
cd mmdeploy-1.3.1-linux-x86_64-cuda11.8
230230
# 运行 python demo
231231
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
232232
# 运行 C/C++ demo

mmdeploy/version.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Copyright (c) OpenMMLab. All rights reserved.
22
from typing import Tuple
33

4-
__version__ = '1.3.0'
4+
__version__ = '1.3.1'
55
short_version = __version__
66

77

Original file line numberDiff line numberDiff line change
@@ -1,2 +1,2 @@
11
# Copyright (c) OpenMMLab. All rights reserved.
2-
__version__ = '1.3.0'
2+
__version__ = '1.3.1'

0 commit comments

Comments
 (0)