-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathnus-seg.py
209 lines (198 loc) · 5.86 KB
/
nus-seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# For nuScenes we usually do 16-class segmentation.
# For labels_map we follow the uniform format of MMDetection & MMSegmentation
# i.e. we consider the unlabeled class as the last one, which is different
# from the original implementation of some methods e.g. Cylinder3D.
dataset_type = 'NuScenesSegDataset'
data_root = 'data/nuscenes/'
class_names = [
'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle', 'motorcycle',
'pedestrian', 'traffic_cone', 'trailer', 'truck', 'driveable_surface',
'other_flat', 'sidewalk', 'terrain', 'manmade', 'vegetation'
]
labels_map = {
0: 16,
1: 16,
2: 6,
3: 6,
4: 6,
5: 16,
6: 6,
7: 16,
8: 16,
9: 0,
10: 16,
11: 16,
12: 7,
13: 16,
14: 1,
15: 2,
16: 2,
17: 3,
18: 4,
19: 16,
20: 16,
21: 5,
22: 8,
23: 9,
24: 10,
25: 11,
26: 12,
27: 13,
28: 14,
29: 16,
30: 15,
31: 16
}
metainfo = dict(
classes=class_names, seg_label_mapping=labels_map, max_label=31)
input_modality = dict(use_lidar=True, use_camera=False)
data_prefix = dict(
pts='samples/LIDAR_TOP',
img='',
pts_semantic_mask='lidarseg/v1.0-trainval')
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)
# data_root = 's3://openmmlab/datasets/detection3d/nuscenes/'
# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection3d/',
# 'data/': 's3://openmmlab/datasets/detection3d/'
# }))
backend_args = None
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=4,
backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_seg_3d=True,
seg_3d_dtype='np.uint8',
backend_args=backend_args),
dict(type='PointSegClassMapping'),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05],
translation_std=[0.1, 0.1, 0.1]),
dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=4,
backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_seg_3d=True,
seg_3d_dtype='np.uint8',
backend_args=backend_args),
dict(type='PointSegClassMapping'),
dict(type='Pack3DDetInputs', keys=['points'])
]
tta_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=4,
backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_seg_3d=True,
seg_3d_dtype='np.uint8',
backend_args=backend_args),
dict(type='PointSegClassMapping'),
dict(
type='TestTimeAug',
transforms=[[
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.,
flip_ratio_bev_vertical=0.),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.,
flip_ratio_bev_vertical=1.),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=1.,
flip_ratio_bev_vertical=0.),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=1.,
flip_ratio_bev_vertical=1.)
],
[
dict(
type='GlobalRotScaleTrans',
rot_range=[pcd_rotate_range, pcd_rotate_range],
scale_ratio_range=[
pcd_scale_factor, pcd_scale_factor
],
translation_std=[0, 0, 0])
for pcd_rotate_range in [-0.78539816, 0.0, 0.78539816]
for pcd_scale_factor in [0.95, 1.0, 1.05]
], [dict(type='Pack3DDetInputs', keys=['points'])]])
]
train_dataloader = dict(
batch_size=2,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='nuscenes_infos_train.pkl',
data_prefix=data_prefix,
pipeline=train_pipeline,
metainfo=metainfo,
modality=input_modality,
ignore_index=16,
backend_args=backend_args))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='nuscenes_infos_val.pkl',
data_prefix=data_prefix,
pipeline=test_pipeline,
metainfo=metainfo,
modality=input_modality,
ignore_index=16,
test_mode=True,
backend_args=backend_args))
test_dataloader = val_dataloader
val_evaluator = dict(type='SegMetric')
test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')
tta_model = dict(type='Seg3DTTAModel')