Description
I am trying to run tutorial notebook in my local computer. Every step is fine until i face the error when running cell for Train and Evaluation. It says IndexError: Target 15 is out of bounds. I don't understand why the number 15 come in because we know that the amount of label is 8. For comparison, i run the notebook in collab and it work smoothly.
Here's my error :
Output exceeds the size limit. Open the full output data in a text editor
2022-05-05 13:44:15,427 - mmseg - INFO - Loaded 572 images
/home/firqa/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/backbones/resnet.py:431: UserWarning: DeprecationWarning: pretrained is a deprecated, please use "init_cfg" instead
warnings.warn('DeprecationWarning: pretrained is a deprecated, '
2022-05-05 13:44:16,279 - mmseg - INFO - Loaded 143 images
2022-05-05 13:44:16,290 - mmseg - INFO - load checkpoint from local path: /mnt/d/Notebook/Projects/Python/checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth
2022-05-05 13:44:17,783 - mmseg - WARNING - The model and loaded state dict do not match exactly
size mismatch for decode_head.conv_seg.weight: copying a param with shape torch.Size([19, 512, 1, 1]) from checkpoint, the shape in current model is torch.Size([15, 512, 1, 1]).
size mismatch for decode_head.conv_seg.bias: copying a param with shape torch.Size([19]) from checkpoint, the shape in current model is torch.Size([15]).
size mismatch for auxiliary_head.conv_seg.weight: copying a param with shape torch.Size([19, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([15, 256, 1, 1]).
size mismatch for auxiliary_head.conv_seg.bias: copying a param with shape torch.Size([19]) from checkpoint, the shape in current model is torch.Size([15]).
2022-05-05 13:44:17,795 - mmseg - INFO - Start running, host: firqa@firqaaa, work_dir: /mnt/d/Notebook/Projects/Python
2022-05-05 13:44:17,800 - mmseg - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) PolyLrUpdaterHook
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
before_train_epoch:
(VERY_HIGH ) PolyLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TextLoggerHook
2022-05-05 13:44:17,803 - mmseg - INFO - workflow: [('train', 1)], max: 200 iters
2022-05-05 13:44:17,806 - mmseg - INFO - Checkpoints will be saved to /mnt/d/Notebook/Projects/Python by HardDiskBackend.
IndexError Traceback (most recent call last)
Input In [18], in <cell line: 17>()
15 # Create work_dir
16 mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
---> 17 train_segmentor(model, datasets, cfg, distributed=False, validate=True,
18 meta=dict())
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/apis/train.py:191, in train_segmentor(model, dataset, cfg, distributed, validate, timestamp, meta)
189 elif cfg.load_from:
190 runner.load_checkpoint(cfg.load_from)
--> 191 runner.run(data_loaders, cfg.workflow)
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmcv/runner/iter_based_runner.py:134, in IterBasedRunner.run(self, data_loaders, workflow, max_iters, **kwargs)
132 if mode == 'train' and self.iter >= self._max_iters:
133 break
--> 134 iter_runner(iter_loaders[i], **kwargs)
136 time.sleep(1) # wait for some hooks like loggers to finish
137 self.call_hook('after_epoch')
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmcv/runner/iter_based_runner.py:61, in IterBasedRunner.train(self, data_loader, **kwargs)
59 data_batch = next(data_loader)
60 self.call_hook('before_train_iter')
---> 61 outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
62 if not isinstance(outputs, dict):
63 raise TypeError('model.train_step() must return a dict')
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmcv/parallel/data_parallel.py:60, in MMDataParallel.train_step(self, *inputs, **kwargs)
56 if not self.device_ids:
57 # We add the following line thus the module could gather and
58 # convert data containers as those in GPU inference
59 inputs, kwargs = self.scatter(inputs, kwargs, [-1])
---> 60 return self.module.train_step(*inputs[0], **kwargs[0])
62 assert len(self.device_ids) == 1,
63 ('MMDataParallel only supports single GPU training, if you need to'
64 ' train with multiple GPUs, please use MMDistributedDataParallel'
65 ' instead.')
67 for t in chain(self.module.parameters(), self.module.buffers()):
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/segmentors/base.py:138, in BaseSegmentor.train_step(self, data_batch, optimizer, **kwargs)
112 def train_step(self, data_batch, optimizer, **kwargs):
113 """The iteration step during training.
114
115 This method defines an iteration step during training, except for the
(...)
136 averaging the logs.
137 """
--> 138 losses = self(**data_batch)
139 loss, log_vars = self._parse_losses(losses)
141 outputs = dict(
142 loss=loss,
143 log_vars=log_vars,
144 num_samples=len(data_batch['img_metas']))
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
1106 # If we don't have any hooks, we want to skip the rest of the logic in
1107 # this function, and just call forward.
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmcv/runner/fp16_utils.py:110, in auto_fp16..auto_fp16_wrapper..new_func(*args, **kwargs)
107 raise TypeError('@auto_fp16 can only be used to decorate the '
108 f'method of those classes {supported_types}')
109 if not (hasattr(args[0], 'fp16_enabled') and args[0].fp16_enabled):
--> 110 return old_func(*args, **kwargs)
112 # get the arg spec of the decorated method
113 args_info = getfullargspec(old_func)
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/segmentors/base.py:108, in BaseSegmentor.forward(self, img, img_metas, return_loss, **kwargs)
98 """Calls either :func:forward_train
or :func:forward_test
depending
99 on whether return_loss
is True
.
100
(...)
105 the outer list indicating test time augmentations.
106 """
107 if return_loss:
--> 108 return self.forward_train(img, img_metas, **kwargs)
109 else:
110 return self.forward_test(img, img_metas, **kwargs)
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/segmentors/encoder_decoder.py:143, in EncoderDecoder.forward_train(self, img, img_metas, gt_semantic_seg)
139 x = self.extract_feat(img)
141 losses = dict()
--> 143 loss_decode = self._decode_head_forward_train(x, img_metas,
144 gt_semantic_seg)
145 losses.update(loss_decode)
147 if self.with_auxiliary_head:
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/segmentors/encoder_decoder.py:86, in EncoderDecoder._decode_head_forward_train(self, x, img_metas, gt_semantic_seg)
83 """Run forward function and calculate loss for decode head in
84 training."""
85 losses = dict()
---> 86 loss_decode = self.decode_head.forward_train(x, img_metas,
87 gt_semantic_seg,
88 self.train_cfg)
90 losses.update(add_prefix(loss_decode, 'decode'))
91 return losses
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/decode_heads/decode_head.py:204, in BaseDecodeHead.forward_train(self, inputs, img_metas, gt_semantic_seg, train_cfg)
188 """Forward function for training.
189 Args:
190 inputs (list[Tensor]): List of multi-level img features.
(...)
201 dict[str, Tensor]: a dictionary of loss components
202 """
203 seg_logits = self.forward(inputs)
--> 204 losses = self.losses(seg_logits, gt_semantic_seg)
205 return losses
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmcv/runner/fp16_utils.py:198, in force_fp32..force_fp32_wrapper..new_func(*args, **kwargs)
195 raise TypeError('@force_fp32 can only be used to decorate the '
196 'method of nn.Module')
197 if not (hasattr(args[0], 'fp16_enabled') and args[0].fp16_enabled):
--> 198 return old_func(*args, **kwargs)
199 # get the arg spec of the decorated method
200 args_info = getfullargspec(old_func)
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/decode_heads/decode_head.py:252, in BaseDecodeHead.losses(self, seg_logit, seg_label)
250 for loss_decode in losses_decode:
251 if loss_decode.loss_name not in loss:
--> 252 loss[loss_decode.loss_name] = loss_decode(
253 seg_logit,
254 seg_label,
255 weight=seg_weight,
256 ignore_index=self.ignore_index)
257 else:
258 loss[loss_decode.loss_name] += loss_decode(
259 seg_logit,
260 seg_label,
261 weight=seg_weight,
262 ignore_index=self.ignore_index)
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
1106 # If we don't have any hooks, we want to skip the rest of the logic in
1107 # this function, and just call forward.
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/losses/cross_entropy_loss.py:271, in CrossEntropyLoss.forward(self, cls_score, label, weight, avg_factor, reduction_override, ignore_index, **kwargs)
269 class_weight = None
270 # Note: for BCE loss, label < 0 is invalid.
--> 271 loss_cls = self.loss_weight * self.cls_criterion(
272 cls_score,
273 label,
274 weight,
275 class_weight=class_weight,
276 reduction=reduction,
277 avg_factor=avg_factor,
278 avg_non_ignore=self.avg_non_ignore,
279 ignore_index=ignore_index,
280 **kwargs)
281 return loss_cls
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/mmseg/models/losses/cross_entropy_loss.py:45, in cross_entropy(pred, label, weight, class_weight, reduction, avg_factor, ignore_index, avg_non_ignore)
20 """cross_entropy. The wrapper function for :func:F.cross_entropy
21
22 Args:
(...)
40 New in version 0.23.0.
41 """
43 # class_weight is a manual rescaling weight given to each class.
44 # If given, has to be a Tensor of size C element-wise losses
---> 45 loss = F.cross_entropy(
46 pred,
47 label,
48 weight=class_weight,
49 reduction='none',
50 ignore_index=ignore_index)
52 # apply weights and do the reduction
53 # average loss over non-ignored elements
54 # pytorch's official cross_entropy average loss over non-ignored elements
55 # refer to https://github.com/pytorch/pytorch/blob/56b43f4fec1f76953f15a627694d4bba34588969/torch/nn/functional.py#L2660 # noqa
56 if (avg_factor is None) and avg_non_ignore and reduction == 'mean':
File ~/anaconda3/envs/open-mmlab/lib/python3.10/site-packages/torch/nn/functional.py:2996, in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction, label_smoothing)
2994 if size_average is not None or reduce is not None:
2995 reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 2996 return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
IndexError: Target 15 is out of bounds.