|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Application on point cloud\n", |
| 8 | + "\n", |
| 9 | + "## Load modules " |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": null, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import numpy\n", |
| 19 | + "import pandas\n", |
| 20 | + "\n", |
| 21 | + "import openalea.phenomenal.display as phm_display\n", |
| 22 | + "import openalea.phenomenal.data as phm_data\n", |
| 23 | + "import openalea.phenomenal.display.notebook as phm_display_notebook\n", |
| 24 | + "import openalea.phenomenal.object as phm_obj\n", |
| 25 | + "import openalea.phenomenal.multi_view_reconstruction as phm_mvr\n", |
| 26 | + "import openalea.phenomenal.segmentation as phm_seg" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "metadata": {}, |
| 32 | + "source": [ |
| 33 | + "## Load cloud point cloud \n", |
| 34 | + "\n", |
| 35 | + "First we define a function \"read_from_xyz\" to load our point cloud data " |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": null, |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "def read_from_xyz(filename):\n", |
| 45 | + "\n", |
| 46 | + " xyz_position = list()\n", |
| 47 | + " with open(filename, 'r') as f:\n", |
| 48 | + " for line in f:\n", |
| 49 | + " values = [float(v) for v in line.split()[:3]] # load just position not color\n", |
| 50 | + " xyz_position.append(tuple(values))\n", |
| 51 | + " f.close()\n", |
| 52 | + " \n", |
| 53 | + " return numpy.array(xyz_position)" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "markdown", |
| 58 | + "metadata": {}, |
| 59 | + "source": [ |
| 60 | + "Maize point cloud was found on : https://github.com/CharlieLeee/Maize-plant-point-cloud-dataset and cleaned mannually with CloudCompare software. 3D reconstruction is pretty bad, leaves are very noised and seems cutted. " |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "file_path = \"maize_point_cloud.pts\"\n", |
| 70 | + "xyz_position = read_from_xyz(file_path)\n", |
| 71 | + "phm_display_notebook.show_point_cloud(xyz_position, size=0.1)" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "markdown", |
| 76 | + "metadata": {}, |
| 77 | + "source": [ |
| 78 | + "## Convert point cloud to voxel grid\n", |
| 79 | + "\n", |
| 80 | + "Once loaded, we attribute for each point a fictive voxel size to simulate the data like a voxel grid. More the fictive voxel size is small more the 3D voxel representation is accurate. After we normalize the pointcloud into a grid." |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": null, |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "fictive_voxel_size = 0.05\n", |
| 90 | + "\n", |
| 91 | + "voxel_grid = phm_obj.VoxelGrid(numpy.array(xyz_position), fictive_voxel_size)\n", |
| 92 | + "voxel_grid = phm_obj.VoxelGrid.from_image_3d(\n", |
| 93 | + " voxel_grid.to_image_3d(),\n", |
| 94 | + " voxels_value=1,\n", |
| 95 | + " voxels_size=1, # must be integer\n", |
| 96 | + " world_coordinate=(0.0, 0.0, 0.0))\n", |
| 97 | + "\n", |
| 98 | + "print(\"Shape Image 3D:\", voxel_grid.to_image_3d().shape)\n", |
| 99 | + "\n", |
| 100 | + "phm_display_notebook.show_voxel_grid(voxel_grid, size=1)" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "code", |
| 105 | + "execution_count": null, |
| 106 | + "metadata": {}, |
| 107 | + "outputs": [], |
| 108 | + "source": [ |
| 109 | + "graph = phm_seg.graph_from_voxel_grid(voxel_grid, connect_all_point=False)\n", |
| 110 | + "src_node = tuple(max(graph.nodes(), key=lambda d: d[1]))\n", |
| 111 | + "voxel_skeleton = phm_seg.skeletonize(voxel_grid, graph, src_node=src_node)" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "markdown", |
| 116 | + "metadata": {}, |
| 117 | + "source": [ |
| 118 | + "## Skeletonization" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "code", |
| 123 | + "execution_count": null, |
| 124 | + "metadata": {}, |
| 125 | + "outputs": [], |
| 126 | + "source": [ |
| 127 | + "phm_display_notebook.show_skeleton(voxel_skeleton, with_voxel=True, size=1.0)" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "markdown", |
| 132 | + "metadata": {}, |
| 133 | + "source": [ |
| 134 | + "## Maize Segmentation" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": null, |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "vms = phm_seg.maize_segmentation(voxel_skeleton, graph, stem_strategy=\"longest\")\n", |
| 144 | + "\n", |
| 145 | + "phm_display_notebook.show_segmentation(vms, size=1)" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "markdown", |
| 150 | + "metadata": {}, |
| 151 | + "source": [ |
| 152 | + "## Maize Analysis" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": null, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [], |
| 160 | + "source": [ |
| 161 | + "vmsi = phm_seg.maize_analysis(vms)\n", |
| 162 | + "phm_display_notebook.show_segmentation(vmsi, size=1)" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "markdown", |
| 167 | + "metadata": {}, |
| 168 | + "source": [ |
| 169 | + "Take a look, of what kind of data is extract. (pm = phenomenal_mearsurement)" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "code", |
| 174 | + "execution_count": null, |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "df = pandas.DataFrame([vo.info for vo in vmsi.voxel_organs] + [vmsi.info])\n", |
| 179 | + "df" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": null, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [], |
| 187 | + "source": [] |
| 188 | + } |
| 189 | + ], |
| 190 | + "metadata": { |
| 191 | + "kernelspec": { |
| 192 | + "display_name": "Python 3 (ipykernel)", |
| 193 | + "language": "python", |
| 194 | + "name": "python3" |
| 195 | + }, |
| 196 | + "language_info": { |
| 197 | + "codemirror_mode": { |
| 198 | + "name": "ipython", |
| 199 | + "version": 3 |
| 200 | + }, |
| 201 | + "file_extension": ".py", |
| 202 | + "mimetype": "text/x-python", |
| 203 | + "name": "python", |
| 204 | + "nbconvert_exporter": "python", |
| 205 | + "pygments_lexer": "ipython3", |
| 206 | + "version": "3.13.3" |
| 207 | + } |
| 208 | + }, |
| 209 | + "nbformat": 4, |
| 210 | + "nbformat_minor": 4 |
| 211 | +} |
0 commit comments