diff --git a/joss.06886/10.21105.joss.06886.crossref.xml b/joss.06886/10.21105.joss.06886.crossref.xml new file mode 100644 index 0000000000..4009a5c76c --- /dev/null +++ b/joss.06886/10.21105.joss.06886.crossref.xml @@ -0,0 +1,433 @@ + + + + 20250520013528-12624eb7a7f023fca319d725a0a579062c450032 + 20250520013528 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 05 + 2025 + + + 10 + + 109 + + + + SAnTex: A Python-based Library for Seismic Anisotropy Calculation + + + + Utpal + Singh + + The University of Sydney, School of Geosciences, Sydney, NSW, Australia + + https://orcid.org/0000-0001-8304-5615 + + + Sinan + Özaydın + + The University of Sydney, School of Geosciences, Sydney, NSW, Australia + + https://orcid.org/0000-0002-4532-9980 + + + Vasileios + Chatzaras + + The University of Sydney, School of Geosciences, Sydney, NSW, Australia + + https://orcid.org/0000-0001-9759-4754 + + + Patrice + Rey + + The University of Sydney, School of Geosciences, Sydney, NSW, Australia + + + + + 05 + 20 + 2025 + + + 6886 + + + 10.21105/joss.06886 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.15428967 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6886 + + + + 10.21105/joss.06886 + https://joss.theoj.org/papers/10.21105/joss.06886 + + + https://joss.theoj.org/papers/10.21105/joss.06886.pdf + + + + + + Development of shape and lattice preferred orientations: Application to the seismic anisotropy of the lower crust + Mainprice + Journal of Structural Geology + 1 + 11 + 10.1016/0191-8141(89)90042-4 + 0191-8141 + 1989 + Mainprice, D., & Nicolas, A. (1989). Development of shape and lattice preferred orientations: Application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11(1), 175–189. https://doi.org/10.1016/0191-8141(89)90042-4 + + + Modeling the impact of melt on seismic properties during mountain building + Lee + Geochemistry, Geophysics, Geosystems + 3 + 18 + 10.1002/2016GC006705 + 1525-2027 + 2017 + Lee, A. L., Walker, A. M., Lloyd, G. E., & Torvela, T. (2017). Modeling the impact of melt on seismic properties during mountain building. Geochemistry, Geophysics, Geosystems, 18(3), 1090–1110. https://doi.org/10.1002/2016GC006705 + + + Self-Consistent Thermodynamic Parameters of Diopside at High Temperatures and High Pressures: Implications for the Adiabatic Geotherm of an Eclogitic Upper Mantle + Su + Minerals + 12 + 11 + 10.3390/min11121322 + 2075-163X + 2021 + Su, C., Fan, D., Jiang, J., Sun, Z., Liu, Y., Song, W., Wan, Y., Yang, G., & Qiu, W. (2021). Self-Consistent Thermodynamic Parameters of Diopside at High Temperatures and High Pressures: Implications for the Adiabatic Geotherm of an Eclogitic Upper Mantle. Minerals, 11(12), 1322. https://doi.org/10.3390/min11121322 + + + The effect of pressure on the elastic properties and seismic anisotropy of diopside and jadeite from atomic scale simulation + Walker + Physics of the Earth and Planetary Interiors + 192-193 + 10.1016/j.pepi.2011.10.002 + 0031-9201 + 2012 + Walker, A. M. (2012). The effect of pressure on the elastic properties and seismic anisotropy of diopside and jadeite from atomic scale simulation. Physics of the Earth and Planetary Interiors, 192-193, 81–89. https://doi.org/10.1016/j.pepi.2011.10.002 + + + Elasticity of Orthoenstatite at High Pressure and Temperature: Implications for the Origin of Low V_{p}/V_{p} Zones in the Mantle Wedge + Qian + Geophysical Research Letters + 45 + 10.1002/2017GL075647 + 2017 + Qian, W., Wang, W., Fan, Z., & Wu, Z. (2017). Elasticity of Orthoenstatite at High Pressure and Temperature: Implications for the Origin of Low V_{p}/V_{p} Zones in the Mantle Wedge. Geophysical Research Letters, 45. https://doi.org/10.1002/2017GL075647 + + + Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite + Kumazawa + Journal of Geophysical Research (1896-1977) + 25 + 74 + 10.1029/JB074i025p05961 + 2156-2202 + 1969 + Kumazawa, M., & Anderson, O. L. (1969). Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. Journal of Geophysical Research (1896-1977), 74(25), 5961–5972. https://doi.org/10.1029/JB074i025p05961 + + + Organized melt, seismic anisotropy, and plate boundary lubrication + Holtzman + Geochemistry, Geophysics, Geosystems + 12 + 11 + 10.1029/2010GC003296 + 1525-2027 + 2010 + Holtzman, B. K., & Kendall, J.-M. (2010). Organized melt, seismic anisotropy, and plate boundary lubrication. Geochemistry, Geophysics, Geosystems, 11(12). https://doi.org/10.1029/2010GC003296 + + + Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture + Chatzaras + Journal of Geophysical Research: Solid Earth + 7 + 121 + 10.1002/2015JB012628 + 2169-9356 + 2016 + Chatzaras, V., Kruckenberg, S. C., Cohen, S. M., Medaris Jr., L. G., Withers, A. C., & Bagley, B. (2016). Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture. Journal of Geophysical Research: Solid Earth, 121(7), 4895–4922. https://doi.org/10.1002/2015JB012628 + + + Relationships Between Olivine CPO and Deformation Parameters in Naturally Deformed Rocks and Implications for Mantle Seismic Anisotropy + Bernard + Geochemistry, Geophysics, Geosystems + 7 + 20 + 10.1029/2019GC008289 + 1525-2027 + 2019 + Bernard, R. E., Behr, W. M., Becker, T. W., & Young, D. J. (2019). Relationships Between Olivine CPO and Deformation Parameters in Naturally Deformed Rocks and Implications for Mantle Seismic Anisotropy. Geochemistry, Geophysics, Geosystems, 20(7), 3469–3494. https://doi.org/10.1029/2019GC008289 + + + Modeling olivine CPO evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle + Boneh + Geochemistry, Geophysics, Geosystems + 10 + 16 + 10.1002/2015GC005964 + 1525-2027 + 2015 + Boneh, Y., Morales, L. F. G., Kaminski, E., & Skemer, P. (2015). Modeling olivine CPO evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle. Geochemistry, Geophysics, Geosystems, 16(10), 3436–3455. https://doi.org/10.1002/2015GC005964 + + + Effect of water and stress on the lattice-preferred orientation of olivine + Jung + Tectonophysics + 1 + 421 + 10.1016/j.tecto.2006.02.011 + 0040-1951 + 2006 + Jung, H., Katayama, I., Jiang, Z., Hiraga, T., & Karato, S. (2006). Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421(1), 1–22. https://doi.org/10.1016/j.tecto.2006.02.011 + + + Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components + Mainprice + Geological Society, London, Special Publications + 1 + 409 + 10.1144/SP409.8 + 2015 + Mainprice, D., Bachmann, F., Hielscher, R., & Schaeben, H. (2015). Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components. Geological Society, London, Special Publications, 409(1), 251–271. https://doi.org/10.1144/SP409.8 + + + Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: Insights from the Labait volcano xenoliths (Tanzania) + Vauchez + Earth and Planetary Science Letters + 3-4 + 232 + 10.1016/j.epsl.2005.01.024 + 2005 + Vauchez, A., Dineur, F., & Rudnick, R. (2005). Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: Insights from the Labait volcano xenoliths (Tanzania). Earth and Planetary Science Letters, 232(3-4), 295–314. https://doi.org/10.1016/j.epsl.2005.01.024 + + + Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure + Almqvist + Reviews of Geophysics + 2 + 55 + 10.1002/2016RG000552 + 8755-1209 + 2017 + Almqvist, B. S. G., & Mainprice, D. (2017). Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Reviews of Geophysics, 55(2), 367–433. https://doi.org/10.1002/2016RG000552 + + + The elastic constants of single-crystal orthopyroxene + Kumazawa + Journal of Geophysical Research + 25 + 74 + 10.1029/JB074i025p05973 + 1969 + Kumazawa, M. (1969). The elastic constants of single-crystal orthopyroxene. Journal of Geophysical Research, 74(25), 5973–5980. https://doi.org/10.1029/JB074i025p05973 + + + Interpretation of SKS-waves using samples from the subcontinental lithosphere + Mainprice + Physics of the Earth and Planetary Interiors + 3-4 + 78 + 10.1016/0031-9201(93)90160-B + 1993 + Mainprice, D., & Silver, P. G. (1993). Interpretation of SKS-waves using samples from the subcontinental lithosphere. Physics of the Earth and Planetary Interiors, 78(3-4), 257–280. https://doi.org/10.1016/0031-9201(93)90160-B + + + Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature + Hacker + Geochemistry, Geophysics, Geosystems + 1 + 5 + 10.1029/2003GC000614 + 1525-2027 + 2004 + Hacker, B. R., & Abers, G. A. (2004). Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems, 5(1). https://doi.org/10.1029/2003GC000614 + + + Microstructures, Water Contents, and Seismic Properties of the Mantle Lithosphere Beneath the Northern Limit of the Hangay Dome, Mongolia + Demouchy + Geochemistry, Geophysics, Geosystems + 1 + 20 + 10.1029/2018GC007931 + 1525-2027 + 2019 + Demouchy, S., Tommasi, A., Ionov, D., Higgie, K., & Carlson, R. W. (2019). Microstructures, Water Contents, and Seismic Properties of the Mantle Lithosphere Beneath the Northern Limit of the Hangay Dome, Mongolia. Geochemistry, Geophysics, Geosystems, 20(1), 183–207. https://doi.org/10.1029/2018GC007931 + + + Teleseismic arrivals at a mid-ocean ridge: Effects of mantle melt and anisotropy + Kendall + Geophysical Research Letters + 4 + 21 + 10.1029/93GL02791 + 1944-8007 + 1994 + Kendall, J.-M. (1994). Teleseismic arrivals at a mid-ocean ridge: Effects of mantle melt and anisotropy. Geophysical Research Letters, 21(4), 301–304. https://doi.org/10.1029/93GL02791 + + + Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity + Takei + Journal of Geophysical Research: Solid Earth + B8 + 103 + 10.1029/98JB01489 + 2156-2202 + 1998 + Takei, Y. (1998). Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity. Journal of Geophysical Research: Solid Earth, 103(B8), 18183–18203. https://doi.org/10.1029/98JB01489 + + + Upper mantle seismic wave velocity: Effects of realistic partial melt geometries + Hammond + Journal of Geophysical Research: Solid Earth + B5 + 105 + 10.1029/2000JB900041 + 2156-2202 + 2000 + Hammond, W. C., & Humphreys, E. D. (2000). Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. Journal of Geophysical Research: Solid Earth, 105(B5), 10975–10986. https://doi.org/10.1029/2000JB900041 + + + Density-based clustering of crystal (mis)orientations and the orix Python library + Johnstone + Journal of Applied Crystallography + 5 + 53 + 10.1107/S1600576720011103 + 1600-5767 + 2020 + Johnstone, D. N., Martineau, B. H., Crout, P., Midgley, P. A., & Eggeman, A. S. (2020). Density-based clustering of crystal (mis)orientations and the orix Python library. Journal of Applied Crystallography, 53(5), 1293–1298. https://doi.org/10.1107/S1600576720011103 + + + Effects of melt-percolation, refertilization and deformation on upper mantle seismic anisotropy: Constraints from peridotite xenoliths, Marie Byrd Land, West Antarctica + Chatzaras + Geological Society, London, Memoirs + 1 + 56 + 10.1144/M56-2020-16 + 2023 + Chatzaras, V., & Kruckenberg, S. C. (2023). Effects of melt-percolation, refertilization and deformation on upper mantle seismic anisotropy: Constraints from peridotite xenoliths, Marie Byrd Land, West Antarctica. Geological Society, London, Memoirs, 56(1), 151–180. https://doi.org/10.1144/M56-2020-16 + + + Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root + Tommasi + Geochemistry, Geophysics, Geosystems + 11 + 15 + 10.1002/2014GC005452 + 1525-2027 + 2014 + Tommasi, A., & Ishikawa, A. (2014). Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root. Geochemistry, Geophysics, Geosystems, 15(11), 4547–4569. https://doi.org/10.1002/2014GC005452 + + + Theory of Elasticity + Timoshenko + 978-0-07-064270-6 + 1969 + Timoshenko, S., & Goodier, J. N. (1969). Theory of Elasticity. McGraw-Hill. ISBN: 978-0-07-064270-6 + + + Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature + Frisillo + Journal of Geophysical Research (1896-1977) + 32 + 77 + 10.1029/JB077i032p06360 + 2156-2202 + 1972 + Frisillo, A. L., & Barsch, G. R. (1972). Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. Journal of Geophysical Research (1896-1977), 77(32), 6360–6384. https://doi.org/10.1029/JB077i032p06360 + + + Pide: Petrophysical Interpretation tools for geoDynamic Exploration. + Ozaydin + Journal of Open Source Software + 105 + 10 + 10.21105/joss.07021 + 2475-9066 + 2025 + Ozaydin, S., Li, L., Singh, U., Rey, P. F., & Manassero, M. C. (2025). Pide: Petrophysical Interpretation tools for geoDynamic Exploration. Journal of Open Source Software, 10(105), 7021. https://doi.org/10.21105/joss.07021 + + + Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies + Karato + Annual Review of Earth and Planetary Sciences + 1 + 36 + 10.1146/annurev.earth.36.031207.124120 + 2008 + Karato, S., Jung, H., Katayama, I., & Skemer, P. (2008). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36(1), 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120 + + + Formation of Anisotropy in Upper Mantle Peridotites - A Review + Nicolas + Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System + 10.1029/GD016p0111 + 978-1-118-67041-5 + 1987 + Nicolas, A., & Christensen, N. I. (1987). Formation of Anisotropy in Upper Mantle Peridotites - A Review. In Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System (pp. 111–123). American Geophysical Union (AGU). https://doi.org/10.1029/GD016p0111 + + + ECOMAN: An open-source package for geodynamic and seismological modelling of mechanical anisotropy + Faccenda + Solid Earth + 10 + 15 + 10.5194/se-15-1241-2024 + 1869-9510 + 2024 + Faccenda, M., VanderBeek, B. P., Montserrat, A. de, Yang, J., Rappisi, F., & Ribe, N. (2024). ECOMAN: An open-source package for geodynamic and seismological modelling of mechanical anisotropy. Solid Earth, 15(10), 1241–1264. https://doi.org/10.5194/se-15-1241-2024 + + + + + + diff --git a/joss.06886/10.21105.joss.06886.pdf b/joss.06886/10.21105.joss.06886.pdf new file mode 100644 index 0000000000..c7c07ccc8c Binary files /dev/null and b/joss.06886/10.21105.joss.06886.pdf differ diff --git a/joss.06886/paper.jats/10.21105.joss.06886.jats b/joss.06886/paper.jats/10.21105.joss.06886.jats new file mode 100644 index 0000000000..740a755fa0 --- /dev/null +++ b/joss.06886/paper.jats/10.21105.joss.06886.jats @@ -0,0 +1,1030 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6886 +10.21105/joss.06886 + +SAnTex: A Python-based Library for Seismic Anisotropy +Calculation + + + +https://orcid.org/0000-0001-8304-5615 + +Singh +Utpal + + + + +https://orcid.org/0000-0002-4532-9980 + +Özaydın +Sinan + + + + +https://orcid.org/0000-0001-9759-4754 + +Chatzaras +Vasileios + + + + + +Rey +Patrice + + + + + +The University of Sydney, School of Geosciences, Sydney, +NSW, Australia + + + +10 +109 +6886 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2025 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +geoscience +seismic anisotropy +crystallographic orientation + + + + + + Summary +

Seismic anisotropy, the directional dependency of seismic wave + velocities, is important for mapping the Earth’s structure and + understanding geodynamic processes. Seismic anisotropy primarily stems + from the development of mineral crystallographic preferred orientation + (i.e. texture) during the plastic deformation of rocks. In-depth + analysis of data from texture characterization techniques like + Electron Backscatter Diffraction (EBSD) enables the determination of + mineral and bulk-rock elastic properties. Although the influences of + pressure, temperature, and melt on elastic properties and seismic + anisotropy is well understood, they are often disregarded. To help + address this gap, we developed SAnTex: Seismic Anisotropy from + Texture, an open-source Python library that calculates the full + elastic tensor of rocks from modal mineral composition, + crystallographic orientation, and a crystal stiffness tensor catalogue + that accounts for the dependency of elasticity with pressure, + temperature and melt. The elastic wave velocities + ( + + Vp, + + + Vs) + and seismic anisotropy are calculated from the full elastic tensors. + SAnTex extends its utility beyond the solidus by estimating melt + volume in a rock and assessing its impact on seismic wave velocities + and anisotropy.

+
+ + Statement of need +

Understanding seismic wave velocities and anisotropy is crucial for + deciphering the composition, structure, and rheological behaviour of + the Earth’s crust and mantle. Seismic anisotropy primarily emerges + from the propagation of waves through rocks that have developed + crystallographic preferred orientations (CPO) as a result of plastic + deformation + (Mainprice + & Nicolas, 1989). The rock composition (e.g., mineralogy, + presence of melt or water) and microstructure (e.g., grain size, + microcracks) can further influence both seismic velocities and + anisotropy + (Almqvist + & Mainprice, 2017; + Karato + et al., 2008; + Nicolas + & Christensen, 1987).

+

Seismic anisotropy calculations that rely on the integration of + textural data obtained by Electron Backscatter Diffraction (EBSD) with + experimentally determined elastic stiffness tensors have become + standard practice in rock-based geodynamic studies + (Bernard + et al., 2019; + Boneh + et al., 2015; + Chatzaras + & Kruckenberg, 2023; + Demouchy + et al., 2019; + Jung + et al., 2006; + Tommasi + & Ishikawa, 2014; + Vauchez + et al., 2005). While established tools like MTEX + (Mainprice + et al., 2015) allow for robust texture analysis, they rely on + ‘reference stiffness tensors’ derived under ambient conditions to + constrain elastic properties (Fig. 1c). However, first-principles + simulations and laboratory experiments reveal that reference stiffness + tensors can significantly deviate from those at deep crustal and + mantle conditions + (Kumazawa, + 1969; + Kumazawa + & Anderson, 1969; + Qian + et al., 2017; + Su + et al., 2021; + Walker, + 2012). Therefore, seismic properties derived from textural + analyses need to integrate the effects of temperature, pressure, and + melt.

+

Melt characteristics — such as fraction, shape, distribution, and + orientation have well-understood effects on seismic properties + (Hammond + & Humphreys, 2000; + Kendall, + 1994; + Takei, + 1998). However, the combined effect of melt and rock texture is + less commonly considered + (Holtzman + & Kendall, 2010; + Lee + et al., 2017). Functionalities that allow us to estimate how + the combination of texture-induced anisotropy and melt affect the + elastic properties under varying pressure and temperature have yet to + be incorporated into an open-source toolkit.

+

To address these gaps, we have developed SAnTex (Seismic Anisotropy + from Texture), a free, open-source Python library. Built upon + open-source libraries such as ORIX + (Johnstone + et al., 2020) for orientation analysis, SanTeX provides an + accessible platform for the geoscientific community, embodying the + principles of free and open science, and promoting reproducibility and + transparency.

+
+ + Methods +

Hooke’s law characterizes the response of materials to tensile or + compressive forces. In its generalized formulation, the law asserts + that the stress tensor is linearly related to the strain tensor + through the material’s stiffness properties + (Timoshenko + & Goodier, 1969):

+

+ + σij=Cijklϵkl

+

where + + σij + and + + ϵkl + are the components of the stress and strain tensors, respectively, + while + + Cijkl + is a 4th-order stiffness tensor with 81 elements representing elastic + moduli. In this general form, Hooke’s law can account for the + anisotropy and directionality of the elastic properties of + materials.

+

The stiffness tensors are derived from laboratory experiments, and + represent the intrinsic elastic properties of individual minerals. The + calculated effective stiffness tensors, on the other hand, provide a + more realistic representation of rock behaviour in the Earth’s crust + and upper mantle. They account for the combined influence of pressure + and temperature.

+

The pressure and temperature dependence of elastic constants is + primarily linear but can include non-linear effects that can be + approximated up to second-order terms using a Taylor series expansion + (Faccenda + et al., 2024; + Frisillo + & Barsch, 1972; + Kumazawa, + 1969; + Mainprice + & Silver, 1993).

+

+ + Cijkl(P,T)=Cijkl(P0,T0)+CijklP|(P0,T0)ΔP+CijklT|(P0,T0)ΔT+𝒪(ΔP2,ΔT2)

+

Within SAnTex, + + Cijkl(p,T) + is the resultant or effective stiffness tensor, + + + Cijkl(P0,T0) + is the reference stiffness tensor obtained at ambient conditions, with + + + P0=104~GPa + and + + T0298~K, + and + + Δp + and + + ΔT + are deviations from the ambient conditions. The partial derivatives + + + Cijklp + and + + CijklT + are obtained from the literature sources included in the data package + within SAnTex.

+

Pressure and temperature have competing effects on the stiffness + tensor. Higher temperatures increase atomic vibrations, making it + easier for the material to deform, while higher pressures force atoms + closer together, making it more difficult for the material to + deform.

+

In the current version of SAnTex, melt is considered as a + homogeneously distributed isotropic phase within an anisotropic host + rock + (Lee + et al., 2017).

+

+ + Cijkl(P,T)=(1fmelt)(Cijkl(P0,T0)+CijklP|(P0,T0)ΔP+CijklT|(P0,T0)ΔT+𝒪(ΔP2,ΔT2))+fmeltCmelt(P,T)

+

The fraction of melt, + + f, + can be controlled by the user. + + Cmelt + is the stiffness tensor of the melt, which assumes an anisotropic + solid host rock and an evenly distributed isotropic melt + (Lee + et al., 2017). The approach currently incorporated in SAnTex + overlooks the complex behaviour of melt, not including its viscosity, + flow dynamics, and interaction with neighbouring minerals, which can + influence the overall anisotropic properties of the system. Future + updates of SAnTex will incorporate additional capabilities, such as + modelling melt–grain interactions, to further refine the calculation + of melt-induced anisotropy.

+ +

EBSD maps after cleaning using (a) MTEX and (b) SAnTex. + Seismic Anisotropy maps using (c) MTEX at ambient pressure and + temperature and SAnTex at (d) ambient pressure and temperature, (e) + at 1.4 GPa and 1100° K, and (f) 1.4 GPa and 1100° K with 7% silicate + melt. Density, P and S wave velocities against (g) temperature and + (h) pressure. The gray shaded areas show the upper and lower + Hashin-Shtrikman bounds scaled by a factor of 1000 to demonstrate + the difference between lower and upper bounds.

+ +
+

SAnTex calculates seismic properties from EBSD crystal orientation + data using the following steps:

+ + +

Calculation of the effective tensor constants by incorporating + pressure and temperature derivatives. SAnTex includes an inbuilt + catalogue of minerals, for which it automatically calculates the + stiffness tensors and density for a range of pressure and + temperature conditions.

+
+ +

Determination of the effective stiffness tensors by applying + Taylor series expansion.

+
+ +

Computation of a mean stiffness tensor using the + Voigt-Reuss-Hill bounds. These bounds provide an estimate for the + effective elastic moduli of heterogeneous or anisotropic materials + by averaging the Voigt (upper bound, corresponding to uniform + strain) and Reuss (lower bound, corresponding to uniform stress) + approximations.

+
+ +

Incorporation of the effect of melt on seismic properties + through a nonlinear peridotite melting curve between solidus and + liquidus (McKenzie & Bickle, 1988). Alternatively, a melt + fraction value can be imposed by the user.

+
+
+

The capabilities of SAnTex are tested on previously published data + using MTEX for a peridotite xenolith from Marie Byrd Land volcanic + province in West Antarctica (Fig. 1) + (Chatzaras + et al., 2016; + Chatzaras + & Kruckenberg, 2023). Here, we demonstrate that the outputs + of SAnTex match those generated using MTEX, at ambient pressure and + temperature conditions (Fig. 1c vs. 1d). Higher seismic anisotropies + are calculated for the same sample, at equilibration temperature and + pressure conditions corresponding to the lithospheric mantle (Fig. + 1e). The effect of assumed 7% melt on seismic anisotropies calculated + at the same equilibration conditions is shown in Fig. 1f. Fig. 1g and + 1h shows seismic wave velocities and densities as a function of + temperature and pressure for the same modal composition. The gray + shaded areas show the upper and lower Hashin-Shtrikman bounds, which + provide theoretical limits on the effective elastic properties of a + composite material based on the volume fractions and properties of its + constituent mineral phases.

+
+ + Package Summary +

SAnTex allows for (Fig. 2):

+ + +

Processing of EBSD data: Facilitates the processing and + cleaning of EBSD data. It leverages the ORIX software package for + the calculation of pole figures, pole density functions and + inverse pole figures + (Johnstone + et al., 2020).

+
+ +

Tensor operations: Supports conversions between the Voigt + matrix representation and full stiffness tensor forms. + Additionally, tensor rotations are performed using orientations + (Euler angles following the ZXZ convention) to transform tensors + between different coordinate systems.

+
+ +

Material analysis: Includes a comprehensive mineral catalogue + that facilitates the calculation of seismic properties based on a + given mineralogical composition. Users may either select phases + corresponding to EBSD-determined phase abundances or assume a + modal mineral composition.

+
+ +

Calculation of seismic anisotropy: Computes seismic velocities + and anisotropy across a range of pressure (0–13 GPa) and + temperature (300–2000 K) conditions (Fig. 1d, e, f), and provides + interactive 2D and 3D plots for visualizing the results (Fig. + 3).

+
+ +

Calculation of isotropic velocities: Computes isotropic seismic + wave velocities and Hashin-Shtrikman bounds + ( + + Vp, + + + Vs, + and + + Vbulk), + along with the isothermal bulk modulus and density, under + geological conditions + (Hacker + & Abers, 2004) (Fig. 1g, h). The calculated velocities + and elastic properties can be fed to geophysical interpretation + tools such as pide + (Ozaydin + et al., 2025).

+
+
+ +

Workflow of SAnTex with fundamental methods and classes + outlined.

+ +
+ +

3D visualisation of (a) Forsterite Vs splitting, (b) + Olivine Vs splitting, (c) Olivine + + Vp.

+ +
+
+ + Acknowledgements +

This research was supported by the Australian Research Council + grants ARC-DP220100709 and ARC-LP190100146. U. Singh acknowledges + financial support from the School of Geosciences at The University of + Sydney.

+
+ + + + + + + + MainpriceDavid + NicolasAdolphe + + Development of shape and lattice preferred orientations: Application to the seismic anisotropy of the lower crust + Journal of Structural Geology + 198901 + 20231023 + 11 + 1 + 0191-8141 + https://www.sciencedirect.com/science/article/pii/0191814189900424 + 10.1016/0191-8141(89)90042-4 + 175 + 189 + + + + + + LeeAmicia L. + WalkerAndrew M. + LloydGeoffrey E. + TorvelaTaija + + Modeling the impact of melt on seismic properties during mountain building + Geochemistry, Geophysics, Geosystems + 2017 + 20231222 + 18 + 3 + 1525-2027 + https://onlinelibrary.wiley.com/doi/abs/10.1002/2016GC006705 + 10.1002/2016GC006705 + 1090 + 1110 + + + + + + SuChang + FanDawei + JiangJiyi + SunZhenjun + LiuYonggang + SongWei + WanYongge + YangGuang + QiuWuxueying + + Self-Consistent Thermodynamic Parameters of Diopside at High Temperatures and High Pressures: Implications for the Adiabatic Geotherm of an Eclogitic Upper Mantle + Minerals + 202112 + 20231026 + 11 + 12 + 2075-163X + https://www.mdpi.com/2075-163X/11/12/1322 + 10.3390/min11121322 + 1322 + + + + + + + WalkerAndrew M. + + The effect of pressure on the elastic properties and seismic anisotropy of diopside and jadeite from atomic scale simulation + Physics of the Earth and Planetary Interiors + 201202 + 20231026 + 192-193 + 0031-9201 + https://www.sciencedirect.com/science/article/pii/S0031920111002081 + 10.1016/j.pepi.2011.10.002 + 81 + 89 + + + + + + QianWangsheng + WangWenzhong + FanZou + WuZhongqing + + Elasticity of Orthoenstatite at High Pressure and Temperature: Implications for the Origin of Low V_{p}/V_{p} Zones in the Mantle Wedge + Geophysical Research Letters + 201712 + 45 + 10.1002/2017GL075647 + + + + + + KumazawaMineo + AndersonOrson L. + + Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite + Journal of Geophysical Research (1896-1977) + 1969 + 20231026 + 74 + 25 + 2156-2202 + https://onlinelibrary.wiley.com/doi/abs/10.1029/JB074i025p05961 + 10.1029/JB074i025p05961 + 5961 + 5972 + + + + + + HoltzmanBenjamin K. + KendallJ.-Michael + + Organized melt, seismic anisotropy, and plate boundary lubrication + Geochemistry, Geophysics, Geosystems + 2010 + 20240116 + 11 + 12 + 1525-2027 + https://onlinelibrary.wiley.com/doi/abs/10.1029/2010GC003296 + 10.1029/2010GC003296 + + + + + + ChatzarasVasileios + KruckenbergSeth C. + CohenShaina M. + Medaris Jr.L. Gordon + WithersAnthony C. + BagleyBrian + + Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture + Journal of Geophysical Research: Solid Earth + 2016 + 20240118 + 121 + 7 + 2169-9356 + https://onlinelibrary.wiley.com/doi/abs/10.1002/2015JB012628 + 10.1002/2015JB012628 + 4895 + 4922 + + + + + + BernardRachel E. + BehrWhitney M. + BeckerThorsten W. + YoungDavid J. + + Relationships Between Olivine CPO and Deformation Parameters in Naturally Deformed Rocks and Implications for Mantle Seismic Anisotropy + Geochemistry, Geophysics, Geosystems + 2019 + 20240118 + 20 + 7 + 1525-2027 + https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008289 + 10.1029/2019GC008289 + 3469 + 3494 + + + + + + BonehYuval + MoralesLuiz F. G. + KaminskiEdouard + SkemerPhilip + + Modeling olivine CPO evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle + Geochemistry, Geophysics, Geosystems + 2015 + 20240118 + 16 + 10 + 1525-2027 + https://onlinelibrary.wiley.com/doi/abs/10.1002/2015GC005964 + 10.1002/2015GC005964 + 3436 + 3455 + + + + + + JungH. + KatayamaI. + JiangZ. + HiragaT. + KaratoS. + + Effect of water and stress on the lattice-preferred orientation of olivine + Tectonophysics + 200607 + 20240118 + 421 + 1 + 0040-1951 + https://www.sciencedirect.com/science/article/pii/S0040195106001041 + 10.1016/j.tecto.2006.02.011 + 1 + 22 + + + + + + MainpriceDavid + BachmannFlorian + HielscherRalf + SchaebenHelmut + + Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components + Geological Society, London, Special Publications + 201501 + 20240118 + 409 + 1 + https://www.lyellcollection.org/doi/full/10.1144/SP409.8 + 10.1144/SP409.8 + 251 + 271 + + + + + + VauchezAlain + DineurFlorence + RudnickRoberta + + Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: Insights from the Labait volcano xenoliths (Tanzania) + Earth and Planetary Science Letters + 200504 + 20240118 + 232 + 3-4 + https://linkinghub.elsevier.com/retrieve/pii/S0012821X05000543 + 10.1016/j.epsl.2005.01.024 + 295 + 314 + + + + + + AlmqvistBjarne S. G. + MainpriceDavid + + Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure + Reviews of Geophysics + 201706 + 20240118 + 55 + 2 + 8755-1209 + https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2016RG000552 + 10.1002/2016RG000552 + 367 + 433 + + + + + + KumazawaMineo + + The elastic constants of single-crystal orthopyroxene + Journal of Geophysical Research + 196911 + 20240118 + 74 + 25 + http://doi.wiley.com/10.1029/JB074i025p05973 + 10.1029/JB074i025p05973 + 5973 + 5980 + + + + + + MainpriceDavid + SilverPaul G. + + Interpretation of SKS-waves using samples from the subcontinental lithosphere + Physics of the Earth and Planetary Interiors + 199307 + 20240118 + 78 + 3-4 + https://linkinghub.elsevier.com/retrieve/pii/003192019390160B + 10.1016/0031-9201(93)90160-B + 257 + 280 + + + + + + HackerBradley R. + AbersGeoffrey A. + + Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature + Geochemistry, Geophysics, Geosystems + 2004 + 20240118 + 5 + 1 + 1525-2027 + https://onlinelibrary.wiley.com/doi/abs/10.1029/2003GC000614 + 10.1029/2003GC000614 + + + + + + DemouchyS. + TommasiA. + IonovD. + HiggieK. + CarlsonR. W. + + Microstructures, Water Contents, and Seismic Properties of the Mantle Lithosphere Beneath the Northern Limit of the Hangay Dome, Mongolia + Geochemistry, Geophysics, Geosystems + 2019 + 20240305 + 20 + 1 + 1525-2027 + https://onlinelibrary.wiley.com/doi/abs/10.1029/2018GC007931 + 10.1029/2018GC007931 + 183 + 207 + + + + + + KendallJ-M. + + Teleseismic arrivals at a mid-ocean ridge: Effects of mantle melt and anisotropy + Geophysical Research Letters + 1994 + 20240305 + 21 + 4 + 1944-8007 + https://onlinelibrary.wiley.com/doi/abs/10.1029/93GL02791 + 10.1029/93GL02791 + 301 + 304 + + + + + + TakeiYasuko + + Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity + Journal of Geophysical Research: Solid Earth + 1998 + 20240305 + 103 + B8 + 2156-2202 + https://onlinelibrary.wiley.com/doi/abs/10.1029/98JB01489 + 10.1029/98JB01489 + 18183 + 18203 + + + + + + HammondWilliam C. + HumphreysEugene D. + + Upper mantle seismic wave velocity: Effects of realistic partial melt geometries + Journal of Geophysical Research: Solid Earth + 2000 + 20240305 + 105 + B5 + 2156-2202 + https://onlinelibrary.wiley.com/doi/abs/10.1029/2000JB900041 + 10.1029/2000JB900041 + 10975 + 10986 + + + + + + JohnstoneD. N. + MartineauB. H. + CroutP. + MidgleyP. A. + EggemanA. S. + + Density-based clustering of crystal (mis)orientations and the orix Python library + Journal of Applied Crystallography + 202010 + 20240429 + 53 + 5 + 1600-5767 + https://journals.iucr.org/j/issues/2020/05/00/nb5268/ + 10.1107/S1600576720011103 + 1293 + 1298 + + + + + + ChatzarasVasileios + KruckenbergSeth C. + + Effects of melt-percolation, refertilization and deformation on upper mantle seismic anisotropy: Constraints from peridotite xenoliths, Marie Byrd Land, West Antarctica + Geological Society, London, Memoirs + 202302 + 20240430 + 56 + 1 + https://www.lyellcollection.org/doi/full/10.1144/M56-2020-16 + 10.1144/M56-2020-16 + 151 + 180 + + + + + + TommasiAndréa + IshikawaAkira + + Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root + Geochemistry, Geophysics, Geosystems + 2014 + 20240815 + 15 + 11 + 1525-2027 + https://onlinelibrary.wiley.com/doi/abs/10.1002/2014GC005452 + 10.1002/2014GC005452 + 4547 + 4569 + + + + + + TimoshenkoStephen + GoodierJames Norman + + Theory of Elasticity + McGraw-Hill + 1969 + 978-0-07-064270-6 + + + + + + FrisilloA. L. + BarschG. R. + + Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature + Journal of Geophysical Research (1896-1977) + 1972 + 20250204 + 77 + 32 + 2156-2202 + https://onlinelibrary.wiley.com/doi/abs/10.1029/JB077i032p06360 + 10.1029/JB077i032p06360 + 6360 + 6384 + + + + + + OzaydinSinan + LiLu + SinghUtpal + ReyPatrice F. + ManasseroMaria Constanza + + Pide: Petrophysical Interpretation tools for geoDynamic Exploration. + Journal of Open Source Software + 202501 + 20250304 + 10 + 105 + 2475-9066 + https://joss.theoj.org/papers/10.21105/joss.07021 + 10.21105/joss.07021 + 7021 + + + + + + + KaratoShun-ichiro + JungHaemyeong + KatayamaIkuo + SkemerPhilip + + Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies + Annual Review of Earth and Planetary Sciences + 2008 + 20240118 + 36 + 1 + https://doi.org/10.1146/annurev.earth.36.031207.124120 + 10.1146/annurev.earth.36.031207.124120 + 59 + 95 + + + + + + NicolasAdolphe + ChristensenNikolas I. + + Formation of Anisotropy in Upper Mantle Peridotites - A Review + Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System + American Geophysical Union (AGU) + 1987 + 20240305 + 978-1-118-67041-5 + https://onlinelibrary.wiley.com/doi/abs/10.1029/GD016p0111 + 10.1029/GD016p0111 + 111 + 123 + + + + + + FaccendaManuele + VanderBeekBrandon P. + MontserratAlbert de + YangJianfeng + RappisiFrancesco + RibeNeil + + ECOMAN: An open-source package for geodynamic and seismological modelling of mechanical anisotropy + Solid Earth + 202410 + 20250310 + 15 + 10 + 1869-9510 + https://se.copernicus.org/articles/15/1241/2024/ + 10.5194/se-15-1241-2024 + 1241 + 1264 + + + + +
diff --git a/joss.06886/paper.jats/santex_fig_1.png b/joss.06886/paper.jats/santex_fig_1.png new file mode 100644 index 0000000000..8bc5b0fb5d Binary files /dev/null and b/joss.06886/paper.jats/santex_fig_1.png differ diff --git a/joss.06886/paper.jats/santex_fig_2.png b/joss.06886/paper.jats/santex_fig_2.png new file mode 100644 index 0000000000..64bbfdb82d Binary files /dev/null and b/joss.06886/paper.jats/santex_fig_2.png differ diff --git a/joss.06886/paper.jats/santex_fig_3.png b/joss.06886/paper.jats/santex_fig_3.png new file mode 100644 index 0000000000..2a117827bd Binary files /dev/null and b/joss.06886/paper.jats/santex_fig_3.png differ