Skip to content

Commit c12c656

Browse files
[OV][Tests] Merge test_fq_params_calculation.py and test_calculation_quantizer_params.py
1 parent b0897b3 commit c12c656

File tree

2 files changed

+206
-217
lines changed

2 files changed

+206
-217
lines changed

tests/openvino/native/quantization/test_calculation_quantizer_params.py

Lines changed: 206 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,8 +8,214 @@
88
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
99
# See the License for the specific language governing permissions and
1010
# limitations under the License.
11+
from pathlib import Path
12+
13+
import openvino as ov
14+
import pytest
15+
import torch
16+
17+
from nncf.common.quantization.structs import QuantizationPreset
18+
from nncf.openvino.graph.nncf_graph_builder import GraphConverter
19+
from nncf.openvino.statistics.aggregator import OVStatisticsAggregator
20+
from nncf.parameters import QuantizationMode
21+
from nncf.quantization.advanced_parameters import OverflowFix
22+
from nncf.quantization.algorithms.min_max.algorithm import MinMaxQuantization
1123
from nncf.tensor import Tensor
24+
from tests.cross_fw.shared.comparator import compare_stats
25+
from tests.cross_fw.shared.json import load_json
1226
from tests.cross_fw.test_templates.test_calculate_quantizer_parameters import TemplateTestFQParams
27+
from tests.openvino.native.common import convert_torch_model
28+
from tests.openvino.native.common import get_actual_reference_for_current_openvino
29+
from tests.openvino.native.common import get_dataset_for_test
30+
from tests.openvino.native.models import SYNTHETIC_MODELS
31+
from tests.openvino.native.models import ConvModel
32+
from tests.openvino.native.models import FPModel
33+
from tests.openvino.native.models import LinearModel
34+
from tests.openvino.native.models import MatMul2DModel
35+
from tests.openvino.native.models import UnifiedScalesModel
36+
from tests.openvino.native.models import WeightsModel
37+
from tests.openvino.native.models import get_torch_model_info
38+
39+
REFERENCE_SCALES_DIR = Path("reference_scales")
40+
41+
42+
def get_fq_nodes_stats_algo(model):
43+
nodes = {}
44+
for op in model.get_ops():
45+
if op.get_type_name() == "FakeQuantize":
46+
input_low = op.input_value(1).get_node().data
47+
input_high = op.input_value(2).get_node().data
48+
output_low = op.input_value(3).get_node().data
49+
output_high = op.input_value(4).get_node().data
50+
51+
nodes[op.get_friendly_name()] = {
52+
"input_low": input_low,
53+
"input_high": input_high,
54+
"output_low": output_low,
55+
"output_high": output_high,
56+
}
57+
elif op.get_type_name() == "FakeConvert":
58+
scale = op.input_value(1).get_node().data
59+
shift = op.input_value(2).get_node().data
60+
61+
nodes[op.get_friendly_name()] = {
62+
"scale": scale,
63+
"shift": shift,
64+
}
65+
return nodes
66+
67+
68+
def quantize_model(ov_model, q_params):
69+
dataset = get_dataset_for_test(ov_model)
70+
graph = GraphConverter.create_nncf_graph(ov_model)
71+
72+
min_max_algo = MinMaxQuantization(subset_size=1, **q_params)
73+
statistics_aggregator = OVStatisticsAggregator(dataset)
74+
statistic_points = min_max_algo.get_statistic_points(ov_model, graph)
75+
statistics_aggregator.register_statistic_points(statistic_points)
76+
statistics_aggregator.collect_statistics(ov_model, graph)
77+
quantized_model = min_max_algo.apply(ov_model, graph, statistics_aggregator.statistic_points)
78+
return quantized_model
79+
80+
81+
@pytest.fixture(params=[True, False], ids=["inplace", "out_of_place"], name="inplace_statistics")
82+
def fixture_inplace_statistics(request):
83+
return request.param
84+
85+
86+
@pytest.mark.parametrize(
87+
"preset",
88+
[QuantizationPreset.PERFORMANCE, QuantizationPreset.MIXED],
89+
ids=[QuantizationPreset.PERFORMANCE.value, QuantizationPreset.MIXED.value],
90+
)
91+
@pytest.mark.parametrize("model_creator_func", SYNTHETIC_MODELS.values())
92+
def test_synthetic_models_fq_scales(model_creator_func, preset, inplace_statistics):
93+
model = model_creator_func()
94+
quantized_model = quantize_model(model.ov_model, {"preset": preset, "inplace_statistics": inplace_statistics})
95+
nodes = get_fq_nodes_stats_algo(quantized_model)
96+
97+
ref_stats_name = model.ref_graph_name.split(".")[0] + f"_{preset.value}.json"
98+
ref_stats_path = get_actual_reference_for_current_openvino(REFERENCE_SCALES_DIR / ref_stats_name)
99+
100+
# Uncomment lines below to generate reference for new models.
101+
# from tests.shared.helpers import dump_to_json
102+
# dump_to_json(ref_stats_path, nodes)
103+
104+
ref_nodes = load_json(ref_stats_path)
105+
compare_stats(ref_nodes, nodes)
106+
107+
108+
@pytest.mark.parametrize(
109+
"mode",
110+
[QuantizationMode.FP8_E4M3, QuantizationMode.FP8_E5M2],
111+
ids=[QuantizationMode.FP8_E4M3.value, QuantizationMode.FP8_E5M2.value],
112+
)
113+
@pytest.mark.parametrize("model_creator_func", [UnifiedScalesModel])
114+
def test_synthetic_models_fc_scales(model_creator_func, mode):
115+
model = model_creator_func()
116+
quantized_model = quantize_model(model.ov_model, {"mode": mode})
117+
real_nodes = [op for op in quantized_model.get_ops() if op.get_type_name() == "FakeConvert"]
118+
119+
ref_stats_name = model.ref_graph_name.split(".")[0] + f"_{mode.value}.json"
120+
ref_stats_path = get_actual_reference_for_current_openvino(REFERENCE_SCALES_DIR / ref_stats_name)
121+
ref_nodes = load_json(ref_stats_path)
122+
123+
assert len(ref_nodes) == len(real_nodes), "The number of the real FakeConvert nodes is not correct"
124+
stat_nodes = get_fq_nodes_stats_algo(quantized_model)
125+
126+
# Uncomment lines below to generate reference for new models.
127+
# from tests.shared.helpers import dump_to_json
128+
# dump_to_json(ref_stats_path, nodes)
129+
130+
compare_stats(ref_nodes, stat_nodes)
131+
132+
133+
@pytest.mark.parametrize(
134+
"overflow_fix",
135+
[OverflowFix.DISABLE, OverflowFix.ENABLE, OverflowFix.FIRST_LAYER],
136+
ids=[OverflowFix.DISABLE.value, OverflowFix.ENABLE.value, OverflowFix.FIRST_LAYER.value],
137+
)
138+
def test_overflow_fix_scales(overflow_fix):
139+
model = WeightsModel()
140+
quantized_model = quantize_model(model.ov_model, {"overflow_fix": overflow_fix})
141+
nodes = get_fq_nodes_stats_algo(quantized_model)
142+
143+
ref_stats_name = model.ref_graph_name.split(".")[0] + f"_overflow_fix_{overflow_fix.value}.json"
144+
ref_stats_path = get_actual_reference_for_current_openvino(REFERENCE_SCALES_DIR / ref_stats_name)
145+
146+
# Uncomment lines below to generate reference for new models.
147+
# from tests.shared.helpers import dump_to_json
148+
# dump_to_json(ref_stats_path, nodes)
149+
150+
ref_nodes = load_json(ref_stats_path)
151+
compare_stats(ref_nodes, nodes)
152+
153+
154+
@pytest.mark.parametrize(
155+
"preset",
156+
[QuantizationPreset.PERFORMANCE, QuantizationPreset.MIXED],
157+
ids=[QuantizationPreset.PERFORMANCE.value, QuantizationPreset.MIXED.value],
158+
)
159+
@pytest.mark.parametrize("model_name", ("mobilenet-v2", "resnet-18", "ssd-vgg-300"))
160+
def test_real_models_fq_scales(model_name, preset, inplace_statistics, tmp_path):
161+
torch.manual_seed(0) # To use the same initialized model
162+
model_cls, input_shape = get_torch_model_info(model_name)
163+
ov_model = convert_torch_model(model_cls(), input_shape, tmp_path)
164+
165+
quantized_model = quantize_model(ov_model, {"preset": preset, "inplace_statistics": inplace_statistics})
166+
nodes = get_fq_nodes_stats_algo(quantized_model)
167+
ref_stats_name = model_name + f"_{preset.value}.json"
168+
ref_stats_path = get_actual_reference_for_current_openvino(REFERENCE_SCALES_DIR / ref_stats_name)
169+
170+
# Uncomment lines below to generate reference for new models.
171+
# from tests.shared.helpers import dump_to_json
172+
# dump_to_json(ref_stats_path, nodes)
173+
174+
ref_nodes = load_json(ref_stats_path)
175+
compare_stats(ref_nodes, nodes)
176+
177+
178+
REF_NODES_SHAPES = {
179+
"LinearModel": {"Input/fq_output_0": (), "MatMul/fq_weights_1": (1, 5)},
180+
"ConvModel": {"Conv/fq_weights_1": (3, 1, 1, 1), "Sub/fq_output_0": ()},
181+
"MatMul2DModel": {"Input/fq_output_0": (), "MatMul/fq_weights_1": (1, 2)},
182+
}
183+
184+
185+
@pytest.mark.parametrize(
186+
"model_creator_func, ref_shapes", zip([LinearModel, ConvModel, MatMul2DModel], REF_NODES_SHAPES.values())
187+
)
188+
def test_synthetic_models_fq_shapes(model_creator_func, ref_shapes, inplace_statistics):
189+
model = model_creator_func()
190+
quantized_model = quantize_model(
191+
model.ov_model, {"preset": QuantizationPreset.PERFORMANCE, "inplace_statistics": inplace_statistics}
192+
)
193+
nodes = get_fq_nodes_stats_algo(quantized_model)
194+
for node_name, node in nodes.items():
195+
assert node["input_low"].shape == ref_shapes[node_name]
196+
assert node["input_high"].shape == ref_shapes[node_name]
197+
assert node["output_low"].shape == ref_shapes[node_name]
198+
assert node["output_high"].shape == ref_shapes[node_name]
199+
200+
201+
@pytest.mark.parametrize("const_dtype", [ov.Type.f16, ov.Type.f32, ov.Type.bf16])
202+
@pytest.mark.parametrize("input_dtype", [ov.Type.f16, ov.Type.f32, ov.Type.bf16])
203+
def test_fq_precision_orig_fp32model(const_dtype, input_dtype, inplace_statistics):
204+
model = FPModel(const_dtype, input_dtype)
205+
quantized_model = quantize_model(
206+
model.ov_model, {"preset": QuantizationPreset.PERFORMANCE, "inplace_statistics": inplace_statistics}
207+
)
208+
for op in quantized_model.get_ops():
209+
if op.get_type_name() == "FakeQuantize":
210+
inp_node = op.input(0)
211+
fq_input_node = inp_node.get_source_output().get_node()
212+
if fq_input_node.get_type_name() == "Constant":
213+
assert op.get_element_type() == const_dtype
214+
elif op.get_type_name() == "Convert":
215+
inp_node = op.input(0)
216+
fq_input_node = inp_node.get_source_output().get_node()
217+
if fq_input_node.get_type_name() == "Constant":
218+
assert op.get_element_type() == input_dtype
13219

14220

15221
class TestFQParams(TemplateTestFQParams):

0 commit comments

Comments
 (0)