Skip to content

Commit 8e62237

Browse files
committed
Merge branch 'master' into kv_multiheadsize
2 parents dd777a0 + 3749665 commit 8e62237

File tree

215 files changed

+4848
-1937
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

215 files changed

+4848
-1937
lines changed

.github/workflows/windows_conditional_compilation.yml

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -58,8 +58,7 @@ jobs:
5858
env:
5959
CMAKE_BUILD_TYPE: 'Release'
6060
CMAKE_COMPILE_WARNING_AS_ERROR: 'ON'
61-
# CMAKE_GENERATOR: 'Ninja Multi-Config'
62-
CMAKE_GENERATOR: 'Visual Studio 17 2022'
61+
CMAKE_GENERATOR: 'Ninja Multi-Config' # Visual Studio does not seem to work with `ccache`. Ninja is the generator supported by `ccache`
6362
CMAKE_CXX_COMPILER_LAUNCHER: ccache
6463
CMAKE_C_COMPILER_LAUNCHER: ccache
6564
CCACHE_REMOTE_DIR: "C:\\mount\\caches\\ccache\\windows2022_x86_64_itt\\${{ github.base_ref || github.ref_name }}"

docs/articles_en/about-openvino/performance-benchmarks.rst

Lines changed: 10 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -26,16 +26,6 @@ implemented in your solutions. Click the buttons below to see the chosen benchma
2626
.. grid:: 1 1 2 2
2727
:gutter: 4
2828

29-
.. grid-item::
30-
31-
.. button-link:: #
32-
:class: ov-toolkit-benchmark-results
33-
:color: primary
34-
:outline:
35-
:expand:
36-
37-
:material-regular:`bar_chart;1.4em` OpenVINO Benchmark Graphs (general)
38-
3929
.. grid-item::
4030

4131
.. button-link:: #
@@ -66,7 +56,15 @@ implemented in your solutions. Click the buttons below to see the chosen benchma
6656

6757
:material-regular:`bar_chart;1.4em` OVMS for GenAI
6858

59+
.. grid-item::
6960

61+
.. button-link:: #
62+
:class: ov-toolkit-benchmark-results
63+
:color: primary
64+
:outline:
65+
:expand:
66+
67+
:material-regular:`bar_chart;1.4em` OpenVINO Benchmark Graphs (general)
7068

7169

7270

@@ -153,11 +151,9 @@ For a listing of all platforms and configurations used for testing, refer to the
153151

154152
**Disclaimers**
155153

156-
* Intel® Distribution of OpenVINO™ toolkit performance results are based on release
157-
2025.0, as of February 13, 2025.
154+
* System configurations used for Intel® Distribution of OpenVINO™ toolkit performance results are based on release 2025.1, as of April 9th, 2025.
158155

159-
* OpenVINO Model Server performance results are based on release
160-
2025.0, as of February 13, 2025.
156+
* OpenVINO Model Server performance results are based on release 2025.0, as of February 13, 2025.
161157

162158
The results may not reflect all publicly available updates. Intel technologies' features and
163159
benefits depend on system configuration and may require enabled hardware, software, or service

docs/articles_en/about-openvino/performance-benchmarks/model-accuracy-int8-fp32.rst

Lines changed: 87 additions & 94 deletions
Original file line numberDiff line numberDiff line change
@@ -27,11 +27,11 @@ the table for more information.
2727
* - bert-base-cased
2828
- SST-2_bert_cased_padded
2929
- spearman@cosine
30-
- 2.41%
31-
- 2.78%
32-
- 2.61%
33-
- 2.84%
34-
* - mask_rcnn_resnet50_atrous_coco
30+
- 2.57%
31+
- 2.65%
32+
- 2.54%
33+
- 2.89%
34+
* - Detectron-V2
3535
- COCO2017_detection_91cl_bkgr
3636
- coco_orig_precision
3737
-
@@ -41,31 +41,31 @@ the table for more information.
4141
* - mobilenet-v2
4242
- ImageNet2012
4343
- accuracy @ top1
44+
- -0.93%
45+
- -0.91%
4446
- -1.03%
45-
- -1.00%
46-
- -1.03%
47-
- -1.01%
47+
- -0.95%
4848
* - resnet-50
4949
- ImageNet2012
5050
- accuracy @ top1
51-
- -0.17%
52-
- -0.17%
53-
- -0.18%
54-
- -0.17%
51+
- -0.12%
52+
- -0.12%
53+
- -0.15%
54+
- -0.15%
5555
* - ssd-resnet34-1200
5656
- COCO2017_detection_80cl_bkgr
5757
- map
58-
- -0.01%
59-
- -0.01%
60-
- -0.04%
61-
- -0.04%
62-
* - yolo_v8n
58+
- 0.00%
59+
- 0.00%
60+
- -0.03%
61+
- 0.07%
62+
* - yolo_v11
6363
- COCO2017_detection_80cl
6464
- map
65-
- -0.09%
66-
- -0.09%
67-
- -0.02%
68-
- -0.04%
65+
-
66+
-
67+
-
68+
-
6969
.. list-table:: Model Accuracy for BF16, FP32 and FP16 (FP16: Arc only. BF16: Xeon® 6972P only)
7070
:header-rows: 1
7171

@@ -75,56 +75,49 @@ the table for more information.
7575
- A, FP32
7676
- B, FP32
7777
- C, FP32
78-
- C, BF16
7978
- D, FP16
8079
* - bert-base-cased
8180
- SST-2_bert_cased_padded
8281
- spearman@cosine
8382
- 0.00%
8483
- 0.00%
8584
- 0.00%
86-
- -0.01%
8785
- 0.02%
88-
* - mask_rcnn_resnet50_atrous_coco
86+
* - Detectron-V2
8987
- COCO2017_detection_91cl_bkgr
9088
- coco_orig_precision
9189
-
9290
-
9391
-
9492
-
95-
-
9693
* - mobilenet-v2
9794
- ImageNet2012
9895
- accuracy @ top1
9996
- 0.00%
10097
- 0.00%
10198
- 0.00%
102-
- -0.23%
103-
- -0.03%
99+
- 0.01%
104100
* - resnet-50
105101
- ImageNet2012
106102
- accuracy @ top1
107103
- 0.00%
108104
- 0.00%
109105
- 0.00%
110-
- 0.06%
111106
- 0.01%
112107
* - ssd-resnet34-1200
113108
- COCO2017_detection_80cl_bkgr
114109
- map
115110
- 0.02%
116111
- 0.02%
117112
- 0.01%
118-
- 0.02%
119-
- 0.06%
120-
* - yolo_v8n
113+
- -0.06%
114+
* - yolo_v11
121115
- COCO2017_detection_80cl
122116
- map
123-
- 0.01%
124-
- 0.01%
125-
- 0.01%
117+
- -2.70%
118+
-
119+
-
126120
-
127-
- -0.03%
128121
.. list-table:: Model Accuracy for AMX-FP16, AMX-INT4, Arc-FP16 and Arc-INT4 (Arc™ B-series)
129122
:header-rows: 1
130123

@@ -138,101 +131,101 @@ the table for more information.
138131
* - DeepSeek-R1-Distill-Llama-8B
139132
- Data Default WWB
140133
- Similarity
141-
- 10.3%
142-
- 21.4%
143-
- 0.21%
144-
- 23.5%
134+
- 9.71%
135+
- 21.25%
136+
-
137+
- 21.04%
145138
* - DeepSeek-R1-Distill-Qwen-1.5B
146139
- Data Default WWB
147140
- Similarity
148-
- 16.1%
141+
- 8.45%
149142
- 34.5%
150-
- 2.48%
151-
- 36.4%
143+
- 22.10%
144+
- 32.02%
152145
* - DeepSeek-R1-Distill-Qwen-7B
153146
- Data Default WWB
154147
- Similarity
155148
- 25.5%
156149
- 35.6%
157150
- 3.9%
158151
- 37.2%
159-
* - GLM4-9B-Chat
152+
* - Gemma-2-9B-it
160153
- Data Default WWB
161154
- Similarity
162-
- 6.9%
163-
- 3.8%
164-
- 6.3%
165-
- 15.1%
166-
* - Qwen-2.5-7B-instruct
155+
- 0.89%
156+
- 3.99%
157+
- %
158+
- 4.04%
159+
* - GLM4-9B-Chat
167160
- Data Default WWB
168161
- Similarity
169-
- 7.97%
170-
- 25.12%
171-
- 0.09%
172-
- 23.87%
173-
* - Gemma-2-9B
162+
- 2.52%
163+
- 8.48%
164+
- 8.38%
165+
-
166+
* - Qwen-2.5-7B-instruct
174167
- Data Default WWB
175168
- Similarity
176-
- 4.81%
177-
- 10.25%
178-
- 1.73%
179-
- 10.24%
169+
- 1.51%
170+
- 8.3%
171+
-
172+
- 8.237%
180173
* - Llama-2-7b-chat
181174
- Data Default WWB
182175
- Similarity
183-
- 1.80%
184-
- 22.31%
185-
- 0.13%
186-
- 21.54%
187-
* - Llama-3-8b
188-
- Data Default WWB
189-
- Similarity
190-
- 2.26%
191-
- 23.00%
192-
- 0.12%
193-
- 23.59%
176+
- 1.43%
177+
- 7.46%
178+
-
179+
- 7.18%
194180
* - Llama-3.2-3b-instruct
195181
- Data Default WWB
196182
- Similarity
197-
- 2.40%
198-
- 11.25%
199-
- 0.00%
200-
- 12.32%
201-
* - Mistral-7b-instruct-V0.2
183+
- 2.75%
184+
- 12.05%
185+
- 0.52%
186+
- 11.95%
187+
* - Mistral-7b-instruct-V0.3
202188
- Data Default WWB
203189
- Similarity
204-
- 2.94%
205-
- 9.08%
206-
- 0.37%
207-
- 9.53%
190+
- 2.46%
191+
- 8.93%
192+
- 3.17%
193+
- 7.90%
208194
* - Phi3-mini-4k-instruct
209195
- Data Default WWB
210196
- Similarity
211-
- 8.08%
212-
- 7.93%
213-
- 0.00%
214-
- 8.30%
215-
* - Qwen-2-7B
197+
- 4.55%
198+
- 7.23%
199+
- 1.39%
200+
- 8.47%
201+
* - Phi4-mini-instruct
216202
- Data Default WWB
217203
- Similarity
218-
- 4.97%
219-
- 18.97%
220-
- 0.00%
221-
- 22.38%
204+
- 6.59%
205+
- 12.17%
206+
- 1.91%
207+
- 12.03%
208+
* - Qwen2-VL-7B
209+
- Data Default WWB
210+
- Similarity
211+
- 1.29%
212+
- 8.71%
213+
- 4.22%
214+
- 9.43%
222215
* - Flux.1-schnell
223216
- Data Default WWB
224217
- Similarity
225-
- 4.60%
226-
- 4.20%
227-
- 5.00%
228-
- 3.30%
218+
- 4.80%
219+
- 3.80%
220+
-
221+
- 2.80%
229222
* - Stable-Diffusion-V1-5
230223
- Data Default WWB
231224
- Similarity
232-
- 2.50%
233-
- 1.90%
234-
- 2.10%
235-
- 0.10%
225+
- 3.00%
226+
- 4.30%
227+
- 0.50%
228+
- 4.40%
236229

237230
Notes: For all accuracy metrics a "-", (minus sign), indicates an accuracy drop.
238231
The Similarity metric is the distance from "perfect" and as such always positive.

0 commit comments

Comments
 (0)