@@ -102,17 +102,17 @@ Examples:
102
102
103
103
=head3 Access values
104
104
105
- row(i) : MathObjectMatrix
106
- For a 1D tensor , produces a 1D tensor
107
- For nD tensor with n > 1, produces a (n-1)D tensor
105
+ row(i) : MathObject Matrix
106
+ For a degree 1 Matrix , produces a degree 1 Matrix
107
+ For a degree n Matrix with n > 1, produces a degree (n-1) Matrix
108
108
109
- column(j) : MathObjectMatrix or Real or Complex
110
- For a 1D tensor , produces a Real or Complex
111
- For nD tensor with n > 1, produces an nD tensor where 2nd dimension is 1
109
+ column(j) : MathObject Matrix or Real or Complex
110
+ For a degree 1 Matrix , produces a Real or Complex
111
+ For a degree n Matrix with n > 1, produces a degree n Matrix where the 2nd dimesion is length 1
112
112
113
- element : Real or Complex value when passed the same number of arguments as the dimension of the tensor .
114
- If passed more than n arguments, null. If the dimension of the tensor is n and element is passed
115
- k arguments with k < n, then this produces the corresponding (n-k)-dimensional tensor.
113
+ element : Real/ Complex/Fraction value when passed the same number of arguments as the degree of the Matrix .
114
+ If passed more than n arguments, null. If the degree of the Matrix is n and C< element > is passed
115
+ k arguments with k < n, then this produces the corresponding degree (n-k) tensor.
116
116
117
117
=head3 Update values (these need to be added)
118
118
@@ -365,7 +365,7 @@ sub isSquare {
365
365
366
366
=head3 C<isRow >
367
367
368
- Return true if the matix is 1-dimensional (i.e., is a matrix row)
368
+ Return true if the matix is degree 1 (i.e., is a matrix row)
369
369
370
370
Usage:
371
371
@@ -379,8 +379,7 @@ Usage:
379
379
380
380
sub isRow {
381
381
my $self = shift ;
382
- my @d = $self -> dimensions;
383
- return scalar (@d ) == 1;
382
+ return $self -> degree == 1;
384
383
}
385
384
386
385
=head3 C<isOne >
@@ -428,16 +427,22 @@ sub isOne {
428
427
429
428
=head3 C<isZero >
430
429
431
- Check for zero matrix.
430
+ Check for zero Matrix
432
431
433
432
Usage:
434
433
435
434
$A = Matrix([ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ], [13, 14, 15, 16] ]);
436
- $A->isZero; # is false
435
+ $A->isZero; # is false
437
436
438
437
$B = Matrix([ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]);
439
438
$B->isZero; # is true;
440
439
440
+ $C = Matrix([ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ]);
441
+ $C->isZero; # is false
442
+
443
+ $D = Matrix([ [ [ 0, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 0 ] ] ]);
444
+ $D->isZero; # is true
445
+
441
446
=cut
442
447
443
448
sub isZero {
@@ -446,58 +451,105 @@ sub isZero {
446
451
return 1;
447
452
}
448
453
449
- #
450
- # See if the matrix is triangular, diagonal, symmetric, orthogonal
451
- #
454
+ =head3 C<isUpperTriangular >
455
+
456
+ Check if a Matrix is upper triangular (for degree > 2, applies to frontal slice matrices)
457
+
458
+ =cut
452
459
453
460
sub isUpperTriangular {
454
461
my $self = shift ;
455
462
my @d = $self -> dimensions;
456
463
return 1 if scalar (@d ) == 1;
457
- return 0 if scalar (@d ) > 2;
458
- for my $i (2 .. $d [0]) {
459
- for my $j (1 .. ($i - 1 < $d [1] ? $i - 1 : $d [1])) {
460
- return 0 unless $self -> element($i , $j ) == 0;
464
+ if (scalar (@d ) == 2) {
465
+ for my $i (2 .. $d [0]) {
466
+ for my $j (1 .. ($i - 1 < $d [1] ? $i - 1 : $d [1])) {
467
+ return 0 unless $self -> element($i , $j ) == 0;
468
+ }
469
+ }
470
+ } else {
471
+ for my $row (@{ $self -> {data } }) {
472
+ if (!$row -> isUpperTriangular) {
473
+ return 0;
474
+ }
461
475
}
462
476
}
463
477
return 1;
464
478
}
465
479
480
+ =head3 C<isLowerTriangular >
481
+
482
+ Check if a Matrix is lower triangular (for degree > 2, applies to frontal slice matrices)
483
+
484
+ =cut
485
+
466
486
sub isLowerTriangular {
467
487
my $self = shift ;
468
488
my @d = $self -> dimensions;
469
489
if (scalar (@d ) == 1) {
470
490
for ((@{ $self -> {data } })[ 1 .. $# { $self -> {data } } ]) {
471
491
return 0 unless $_ == 0;
472
492
}
473
- }
474
- return 0 if scalar (@d ) > 2;
475
- for my $i (1 .. $d [0] - 1) {
476
- for my $j ($i + 1 .. $d [1]) {
477
- return 0 unless $self -> element($i , $j ) == 0;
493
+ } elsif (scalar (@d ) == 2) {
494
+ for my $i (1 .. $d [0]) {
495
+ for my $j ($i + 1 .. $d [1]) {
496
+ return 0 unless $self -> element($i , $j ) == 0;
497
+ }
498
+ }
499
+ } else {
500
+ for my $row (@{ $self -> {data } }) {
501
+ if (!$row -> isLowerTriangular) {
502
+ return 0;
503
+ }
478
504
}
479
505
}
480
506
return 1;
481
507
}
482
508
509
+ =head3 C<isDiagonal >
510
+
511
+ Check if a Matrix is diagonal (for degree > 2, applies to frontal slice matrices)
512
+
513
+ =cut
514
+
483
515
sub isDiagonal {
484
516
my $self = shift ;
485
517
return $self -> isSquare && $self -> isUpperTriangular && $self -> isLowerTriangular;
486
518
}
487
519
520
+ =head3 C<isSymmetric >
521
+
522
+ Check if a Matrix is symmetric (for degree > 2, applies to frontal slice matrices)
523
+
524
+ =cut
525
+
488
526
sub isSymmetric {
489
527
my $self = shift ;
490
528
return 0 unless $self -> isSquare;
491
- my $d = ($self -> dimensions)[0];
492
- return 1 if $d == 1;
493
- for my $i (1 .. $d - 1) {
494
- for my $j ($i + 1 .. $d ) {
495
- return 0 unless $self -> element($i , $j ) == $self -> element($j , $i );
529
+ my @d = $self -> dimensions;
530
+ return 1 if $d [-1] == 1;
531
+ if (scalar (@d ) == 2) {
532
+ for my $i (1 .. $d [0] - 1) {
533
+ for my $j ($i + 1 .. $d [0]) {
534
+ return 0 unless $self -> element($i , $j ) == $self -> element($j , $i );
535
+ }
536
+ }
537
+ } else {
538
+ for my $row (@{ $self -> {data } }) {
539
+ if (!$row -> isSymmetric) {
540
+ return 0;
541
+ }
496
542
}
497
543
}
498
544
return 1;
499
545
}
500
546
547
+ =head3 C<isOrthogonal >
548
+
549
+ Check if a Matrix is orthogonal (for degree > 2, applies to frontal slice matrices)
550
+
551
+ =cut
552
+
501
553
sub isOrthogonal {
502
554
my $self = shift ;
503
555
return 0 unless $self -> isSquare;
@@ -509,50 +561,77 @@ sub isOrthogonal {
509
561
return $M -> isOne;
510
562
}
511
563
512
- #
513
- # See if the matrix is in (reduced) row echelon form
514
- #
564
+ =head3 C<isREF >
565
+
566
+ Check if a Matrix is in row echelon form (for degree > 2, applies to frontal slice matrices)
567
+
568
+ =cut
515
569
516
570
sub isREF {
517
571
my $self = shift ;
518
572
my @d = $self -> dimensions;
519
573
return 1 if scalar (@d ) == 1;
520
- return 0 if scalar (@d ) > 2;
521
- my $k = 0;
522
- for my $i (1 .. $d [0]) {
523
- for my $j (1 .. $d [1]) {
524
- if ($j <= $k ) {
525
- return 0 unless $self -> element($i , $j ) == 0;
526
- } elsif ($self -> element($i , $j ) != 0) {
527
- $k = $j ;
528
- last ;
529
- } elsif ($j == $d [1]) {
530
- $k = $d [1] + 1;
574
+ if (scalar (@d ) == 2) {
575
+ my $k = 0;
576
+ for my $i (1 .. $d [0]) {
577
+ for my $j (1 .. $d [1]) {
578
+ if ($j <= $k ) {
579
+ return 0 unless $self -> element($i , $j ) == 0;
580
+ } elsif ($self -> element($i , $j ) != 0) {
581
+ $k = $j ;
582
+ last ;
583
+ } elsif ($j == $d [1]) {
584
+ $k = $d [1] + 1;
585
+ }
586
+ }
587
+ }
588
+ } else {
589
+ for my $row (@{ $self -> {data } }) {
590
+ if (!$row -> isREF) {
591
+ return 0;
531
592
}
532
593
}
533
594
}
534
595
return 1;
535
596
}
536
597
598
+ =head3 C<isREF >
599
+
600
+ Check if a Matrix is in reduced row echelon form (for degree > 2, applies to frontal slice matrices)
601
+
602
+ =cut
603
+
537
604
sub isRREF {
538
605
my $self = shift ;
539
606
my @d = $self -> dimensions;
540
- return 1 if scalar (@d ) == 1;
541
- return 0 if scalar (@d ) > 2;
542
- my $k = 0;
543
- for my $i (1 .. $d [0]) {
544
- for my $j (1 .. $d [1]) {
545
- if ($j <= $k ) {
546
- return 0 unless $self -> element($i , $j ) == 0;
547
- } elsif ($self -> element($i , $j ) != 0) {
548
- return 0 unless $self -> element($i , $j ) == 1;
549
- for my $m (1 .. $i - 1) {
550
- return 0 unless $self -> element($m , $j ) == 0;
607
+ if (scalar (@d ) == 1) {
608
+ for my $i (1 .. $d [0]) {
609
+ next if $self -> element($i ) == 0;
610
+ return $self -> element($i ) == 1 ? 1 : 0;
611
+ }
612
+ return 1;
613
+ } elsif (scalar (@d ) == 2) {
614
+ my $k = 0;
615
+ for my $i (1 .. $d [0]) {
616
+ for my $j (1 .. $d [1]) {
617
+ if ($j <= $k ) {
618
+ return 0 unless $self -> element($i , $j ) == 0;
619
+ } elsif ($self -> element($i , $j ) != 0) {
620
+ return 0 unless $self -> element($i , $j ) == 1;
621
+ for my $m (1 .. $i - 1) {
622
+ return 0 unless $self -> element($m , $j ) == 0;
623
+ }
624
+ $k = $j ;
625
+ last ;
626
+ } elsif ($j == $d [1]) {
627
+ $k = $d [1] + 1;
551
628
}
552
- $k = $j ;
553
- last ;
554
- } elsif ($j == $d [1]) {
555
- $k = $d [1] + 1;
629
+ }
630
+ }
631
+ } else {
632
+ for my $row (@{ $self -> {data } }) {
633
+ if (!$row -> isRREF) {
634
+ return 0;
556
635
}
557
636
}
558
637
}
@@ -849,7 +928,7 @@ sub I {
849
928
850
929
=head3 C<E >
851
930
852
- Get an elementary matrix of the requested size and type. These include matrix that upon left multiply will
931
+ Get a degree 2 elementary matrix of the requested size and type. These include matrix that upon left multiply will
853
932
perform row operations.
854
933
855
934
=over
@@ -962,7 +1041,7 @@ sub E {
962
1041
963
1042
=head3 C<P >
964
1043
965
- Creates a permutation matrix of the requested size.
1044
+ Creates a degree 2 permutation matrix of the requested size.
966
1045
967
1046
C<< Value::Matrix->P(n,(cycles)) >> in general where C<cycles > is a sequence of array references
968
1047
of the cycles.
@@ -1035,7 +1114,7 @@ sub P {
1035
1114
1036
1115
=head3 C<Zero >
1037
1116
1038
- Create a zero matrix of requested size. If called on existing matrix, creates a matrix as
1117
+ Create a degree 2 zero matrix of requested size. If called on existing matrix, creates a matrix as
1039
1118
the same size as given matrix.
1040
1119
1041
1120
Usage:
@@ -1068,7 +1147,8 @@ sub Zero {
1068
1147
1069
1148
=head3 C<row >
1070
1149
1071
- Extract a given row from the matrix.
1150
+ Extract a given row from the matrix. For a degree 1 Matrix, $M->row(1) will return $M itself.
1151
+ Otherwise, a "row" is defined by the first index. For an degree n Matrix, a "row" will be a degree (n-1) Matrix.
1072
1152
1073
1153
Usage:
1074
1154
@@ -1089,7 +1169,9 @@ sub row {
1089
1169
1090
1170
=head3 C<column >
1091
1171
1092
- Extract a given column from the matrix.
1172
+ Extract a given column from the matrix. For a degree 1 Matrix, C<$M- > column(j)> will return the jth entry.
1173
+ Otherwise, for an degree n Matrix, C<$M- > column(j)> returns an degree n Matrix tensor using j for the second index.
1174
+ To obtain the corresponding degree (n-1) Matrix, see C<slice() > .
1093
1175
1094
1176
Usage:
1095
1177
@@ -1118,11 +1200,11 @@ sub column {
1118
1200
1119
1201
=head3 C<element >
1120
1202
1121
- Extract an element from the given row/col .
1203
+ Extract an element from the given position .
1122
1204
1123
1205
Usage:
1124
1206
1125
- $A = Matrix([ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ] ]);
1207
+ $A = Matrix([ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ] ]);
1126
1208
$A->element(2,3); # returns 7
1127
1209
1128
1210
$B = Matrix([ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 5, 6 ], [ 7, 8 ] ] ]);
@@ -1203,6 +1285,8 @@ sub det {
1203
1285
my $self = shift ;
1204
1286
$self -> wwMatrixLR;
1205
1287
Value-> Error(" Can't take determinant of non-square matrix" ) unless $self -> isSquare;
1288
+ my $n = $self -> degree;
1289
+ Value-> Error(" Can't take determinant of degree $n matrix" ) unless ($n <= 2);
1206
1290
return Value::makeValue($self -> {lrM }-> det_LR);
1207
1291
}
1208
1292
0 commit comments