Skip to content

Commit 2c51a87

Browse files
committed
update several matrix methods to apply to degree n matrices
1 parent f547673 commit 2c51a87

File tree

1 file changed

+151
-67
lines changed

1 file changed

+151
-67
lines changed

lib/Value/Matrix.pm

+151-67
Original file line numberDiff line numberDiff line change
@@ -102,17 +102,17 @@ Examples:
102102
103103
=head3 Access values
104104
105-
row(i) : MathObjectMatrix
106-
For a 1D tensor, produces a 1D tensor
107-
For nD tensor with n > 1, produces a (n-1)D tensor
105+
row(i) : MathObject Matrix
106+
For a degree 1 Matrix, produces a degree 1 Matrix
107+
For a degree n Matrix with n > 1, produces a degree (n-1) Matrix
108108
109-
column(j) : MathObjectMatrix or Real or Complex
110-
For a 1D tensor, produces a Real or Complex
111-
For nD tensor with n > 1, produces an nD tensor where 2nd dimension is 1
109+
column(j) : MathObject Matrix or Real or Complex
110+
For a degree 1 Matrix, produces a Real or Complex
111+
For a degree n Matrix with n > 1, produces a degree n Matrix where the 2nd dimesion is length 1
112112
113-
element : Real or Complex value when passed the same number of arguments as the dimension of the tensor.
114-
If passed more than n arguments, null. If the dimension of the tensor is n and element is passed
115-
k arguments with k < n, then this produces the corresponding (n-k)-dimensional tensor.
113+
element : Real/Complex/Fraction value when passed the same number of arguments as the degree of the Matrix.
114+
If passed more than n arguments, null. If the degree of the Matrix is n and C<element> is passed
115+
k arguments with k < n, then this produces the corresponding degree (n-k) tensor.
116116
117117
=head3 Update values (these need to be added)
118118
@@ -365,7 +365,7 @@ sub isSquare {
365365

366366
=head3 C<isRow>
367367
368-
Return true if the matix is 1-dimensional (i.e., is a matrix row)
368+
Return true if the matix is degree 1 (i.e., is a matrix row)
369369
370370
Usage:
371371
@@ -379,8 +379,7 @@ Usage:
379379

380380
sub isRow {
381381
my $self = shift;
382-
my @d = $self->dimensions;
383-
return scalar(@d) == 1;
382+
return $self->degree == 1;
384383
}
385384

386385
=head3 C<isOne>
@@ -428,16 +427,22 @@ sub isOne {
428427

429428
=head3 C<isZero>
430429
431-
Check for zero matrix.
430+
Check for zero Matrix
432431
433432
Usage:
434433
435434
$A = Matrix([ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ], [13, 14, 15, 16] ]);
436-
$A->isZero; # is false
435+
$A->isZero; # is false
437436
438437
$B = Matrix([ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]);
439438
$B->isZero; # is true;
440439
440+
$C = Matrix([ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ]);
441+
$C->isZero; # is false
442+
443+
$D = Matrix([ [ [ 0, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 0 ] ] ]);
444+
$D->isZero; # is true
445+
441446
=cut
442447

443448
sub isZero {
@@ -446,58 +451,105 @@ sub isZero {
446451
return 1;
447452
}
448453

449-
#
450-
# See if the matrix is triangular, diagonal, symmetric, orthogonal
451-
#
454+
=head3 C<isUpperTriangular>
455+
456+
Check if a Matrix is upper triangular (for degree > 2, applies to frontal slice matrices)
457+
458+
=cut
452459

453460
sub isUpperTriangular {
454461
my $self = shift;
455462
my @d = $self->dimensions;
456463
return 1 if scalar(@d) == 1;
457-
return 0 if scalar(@d) > 2;
458-
for my $i (2 .. $d[0]) {
459-
for my $j (1 .. ($i - 1 < $d[1] ? $i - 1 : $d[1])) {
460-
return 0 unless $self->element($i, $j) == 0;
464+
if (scalar(@d) == 2) {
465+
for my $i (2 .. $d[0]) {
466+
for my $j (1 .. ($i - 1 < $d[1] ? $i - 1 : $d[1])) {
467+
return 0 unless $self->element($i, $j) == 0;
468+
}
469+
}
470+
} else {
471+
for my $row (@{ $self->{data} }) {
472+
if (!$row->isUpperTriangular) {
473+
return 0;
474+
}
461475
}
462476
}
463477
return 1;
464478
}
465479

480+
=head3 C<isLowerTriangular>
481+
482+
Check if a Matrix is lower triangular (for degree > 2, applies to frontal slice matrices)
483+
484+
=cut
485+
466486
sub isLowerTriangular {
467487
my $self = shift;
468488
my @d = $self->dimensions;
469489
if (scalar(@d) == 1) {
470490
for ((@{ $self->{data} })[ 1 .. $#{ $self->{data} } ]) {
471491
return 0 unless $_ == 0;
472492
}
473-
}
474-
return 0 if scalar(@d) > 2;
475-
for my $i (1 .. $d[0] - 1) {
476-
for my $j ($i + 1 .. $d[1]) {
477-
return 0 unless $self->element($i, $j) == 0;
493+
} elsif (scalar(@d) == 2) {
494+
for my $i (1 .. $d[0]) {
495+
for my $j ($i + 1 .. $d[1]) {
496+
return 0 unless $self->element($i, $j) == 0;
497+
}
498+
}
499+
} else {
500+
for my $row (@{ $self->{data} }) {
501+
if (!$row->isLowerTriangular) {
502+
return 0;
503+
}
478504
}
479505
}
480506
return 1;
481507
}
482508

509+
=head3 C<isDiagonal>
510+
511+
Check if a Matrix is diagonal (for degree > 2, applies to frontal slice matrices)
512+
513+
=cut
514+
483515
sub isDiagonal {
484516
my $self = shift;
485517
return $self->isSquare && $self->isUpperTriangular && $self->isLowerTriangular;
486518
}
487519

520+
=head3 C<isSymmetric>
521+
522+
Check if a Matrix is symmetric (for degree > 2, applies to frontal slice matrices)
523+
524+
=cut
525+
488526
sub isSymmetric {
489527
my $self = shift;
490528
return 0 unless $self->isSquare;
491-
my $d = ($self->dimensions)[0];
492-
return 1 if $d == 1;
493-
for my $i (1 .. $d - 1) {
494-
for my $j ($i + 1 .. $d) {
495-
return 0 unless $self->element($i, $j) == $self->element($j, $i);
529+
my @d = $self->dimensions;
530+
return 1 if $d[-1] == 1;
531+
if (scalar(@d) == 2) {
532+
for my $i (1 .. $d[0] - 1) {
533+
for my $j ($i + 1 .. $d[0]) {
534+
return 0 unless $self->element($i, $j) == $self->element($j, $i);
535+
}
536+
}
537+
} else {
538+
for my $row (@{ $self->{data} }) {
539+
if (!$row->isSymmetric) {
540+
return 0;
541+
}
496542
}
497543
}
498544
return 1;
499545
}
500546

547+
=head3 C<isOrthogonal>
548+
549+
Check if a Matrix is orthogonal (for degree > 2, applies to frontal slice matrices)
550+
551+
=cut
552+
501553
sub isOrthogonal {
502554
my $self = shift;
503555
return 0 unless $self->isSquare;
@@ -509,50 +561,77 @@ sub isOrthogonal {
509561
return $M->isOne;
510562
}
511563

512-
#
513-
# See if the matrix is in (reduced) row echelon form
514-
#
564+
=head3 C<isREF>
565+
566+
Check if a Matrix is in row echelon form (for degree > 2, applies to frontal slice matrices)
567+
568+
=cut
515569

516570
sub isREF {
517571
my $self = shift;
518572
my @d = $self->dimensions;
519573
return 1 if scalar(@d) == 1;
520-
return 0 if scalar(@d) > 2;
521-
my $k = 0;
522-
for my $i (1 .. $d[0]) {
523-
for my $j (1 .. $d[1]) {
524-
if ($j <= $k) {
525-
return 0 unless $self->element($i, $j) == 0;
526-
} elsif ($self->element($i, $j) != 0) {
527-
$k = $j;
528-
last;
529-
} elsif ($j == $d[1]) {
530-
$k = $d[1] + 1;
574+
if (scalar(@d) == 2) {
575+
my $k = 0;
576+
for my $i (1 .. $d[0]) {
577+
for my $j (1 .. $d[1]) {
578+
if ($j <= $k) {
579+
return 0 unless $self->element($i, $j) == 0;
580+
} elsif ($self->element($i, $j) != 0) {
581+
$k = $j;
582+
last;
583+
} elsif ($j == $d[1]) {
584+
$k = $d[1] + 1;
585+
}
586+
}
587+
}
588+
} else {
589+
for my $row (@{ $self->{data} }) {
590+
if (!$row->isREF) {
591+
return 0;
531592
}
532593
}
533594
}
534595
return 1;
535596
}
536597

598+
=head3 C<isREF>
599+
600+
Check if a Matrix is in reduced row echelon form (for degree > 2, applies to frontal slice matrices)
601+
602+
=cut
603+
537604
sub isRREF {
538605
my $self = shift;
539606
my @d = $self->dimensions;
540-
return 1 if scalar(@d) == 1;
541-
return 0 if scalar(@d) > 2;
542-
my $k = 0;
543-
for my $i (1 .. $d[0]) {
544-
for my $j (1 .. $d[1]) {
545-
if ($j <= $k) {
546-
return 0 unless $self->element($i, $j) == 0;
547-
} elsif ($self->element($i, $j) != 0) {
548-
return 0 unless $self->element($i, $j) == 1;
549-
for my $m (1 .. $i - 1) {
550-
return 0 unless $self->element($m, $j) == 0;
607+
if (scalar(@d) == 1) {
608+
for my $i (1 .. $d[0]) {
609+
next if $self->element($i) == 0;
610+
return $self->element($i) == 1 ? 1 : 0;
611+
}
612+
return 1;
613+
} elsif (scalar(@d) == 2) {
614+
my $k = 0;
615+
for my $i (1 .. $d[0]) {
616+
for my $j (1 .. $d[1]) {
617+
if ($j <= $k) {
618+
return 0 unless $self->element($i, $j) == 0;
619+
} elsif ($self->element($i, $j) != 0) {
620+
return 0 unless $self->element($i, $j) == 1;
621+
for my $m (1 .. $i - 1) {
622+
return 0 unless $self->element($m, $j) == 0;
623+
}
624+
$k = $j;
625+
last;
626+
} elsif ($j == $d[1]) {
627+
$k = $d[1] + 1;
551628
}
552-
$k = $j;
553-
last;
554-
} elsif ($j == $d[1]) {
555-
$k = $d[1] + 1;
629+
}
630+
}
631+
} else {
632+
for my $row (@{ $self->{data} }) {
633+
if (!$row->isRREF) {
634+
return 0;
556635
}
557636
}
558637
}
@@ -849,7 +928,7 @@ sub I {
849928

850929
=head3 C<E>
851930
852-
Get an elementary matrix of the requested size and type. These include matrix that upon left multiply will
931+
Get a degree 2 elementary matrix of the requested size and type. These include matrix that upon left multiply will
853932
perform row operations.
854933
855934
=over
@@ -962,7 +1041,7 @@ sub E {
9621041

9631042
=head3 C<P>
9641043
965-
Creates a permutation matrix of the requested size.
1044+
Creates a degree 2 permutation matrix of the requested size.
9661045
9671046
C<< Value::Matrix->P(n,(cycles)) >> in general where C<cycles> is a sequence of array references
9681047
of the cycles.
@@ -1035,7 +1114,7 @@ sub P {
10351114

10361115
=head3 C<Zero>
10371116
1038-
Create a zero matrix of requested size. If called on existing matrix, creates a matrix as
1117+
Create a degree 2 zero matrix of requested size. If called on existing matrix, creates a matrix as
10391118
the same size as given matrix.
10401119
10411120
Usage:
@@ -1068,7 +1147,8 @@ sub Zero {
10681147

10691148
=head3 C<row>
10701149
1071-
Extract a given row from the matrix.
1150+
Extract a given row from the matrix. For a degree 1 Matrix, $M->row(1) will return $M itself.
1151+
Otherwise, a "row" is defined by the first index. For an degree n Matrix, a "row" will be a degree (n-1) Matrix.
10721152
10731153
Usage:
10741154
@@ -1089,7 +1169,9 @@ sub row {
10891169

10901170
=head3 C<column>
10911171
1092-
Extract a given column from the matrix.
1172+
Extract a given column from the matrix. For a degree 1 Matrix, C<$M->column(j)> will return the jth entry.
1173+
Otherwise, for an degree n Matrix, C<$M->column(j)> returns an degree n Matrix tensor using j for the second index.
1174+
To obtain the corresponding degree (n-1) Matrix, see C<slice()>.
10931175
10941176
Usage:
10951177
@@ -1118,11 +1200,11 @@ sub column {
11181200

11191201
=head3 C<element>
11201202
1121-
Extract an element from the given row/col.
1203+
Extract an element from the given position.
11221204
11231205
Usage:
11241206
1125-
$A = Matrix([ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ] ]);
1207+
$A = Matrix([ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ] ]);
11261208
$A->element(2,3); # returns 7
11271209
11281210
$B = Matrix([ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 5, 6 ], [ 7, 8 ] ] ]);
@@ -1203,6 +1285,8 @@ sub det {
12031285
my $self = shift;
12041286
$self->wwMatrixLR;
12051287
Value->Error("Can't take determinant of non-square matrix") unless $self->isSquare;
1288+
my $n = $self->degree;
1289+
Value->Error("Can't take determinant of degree $n matrix") unless ($n <= 2);
12061290
return Value::makeValue($self->{lrM}->det_LR);
12071291
}
12081292

0 commit comments

Comments
 (0)