Skip to content

Commit eaa4e78

Browse files
authored
Merge pull request #1215 from Alex-Jordan/matrices
tensor multiplication, powers, identity, inverses
2 parents ed18e79 + d7f6260 commit eaa4e78

File tree

2 files changed

+477
-66
lines changed

2 files changed

+477
-66
lines changed

lib/Value/Matrix.pm

+176-66
Original file line numberDiff line numberDiff line change
@@ -64,17 +64,17 @@ Allows complex entries
6464
6565
=back
6666
67-
=head2 Creation of Matrices
67+
=head2 Creation of Matrix MathObjects
6868
6969
Examples:
7070
71-
$M1 = Matrix(1, 2, 3); # 1D (row vector)
71+
$M1 = Matrix(1, 2, 3); # degree 1 (row vector)
7272
$M1 = Matrix([1, 2, 3]);
7373
74-
$M2 = Matrix([1, 2], [3, 4]); # 2D (matrix)
74+
$M2 = Matrix([1, 2], [3, 4]); # degree 2 (matrix)
7575
$M2 = Matrix([[1, 2], [3, 4]]);
7676
77-
$M3 = Matrix([[1, 2], [3, 4]], [[5, 6], [7, 8]]); # 3D (tensor)
77+
$M3 = Matrix([[1, 2], [3, 4]], [[5, 6], [7, 8]]); # degree 3 (tensor)
7878
$M3 = Matrix([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]);
7979
8080
$M4 = ...
@@ -83,21 +83,24 @@ Examples:
8383
8484
=head3 Conversion
8585
86-
$matrix->value produces an array of numbers (for a 1D tensor) or array refs representing the rows.
87-
These are perl numbers and array refs, not MathObjects.
86+
$matrix->value produces an array of references to nested arrays, except at
87+
the deepest level, where there will be the more basic MathObjects that make
88+
up the Matrix (e.g. Real, Complex, Fraction, a mix of these, etc)
8889
8990
$M1->value is (1, 2, 3)
9091
$M2->value is ([1, 2], [3, 4])
9192
$M3->value is ([[1, 2], [3, 4]], [[5, 6], [7, 8]])
9293
9394
$matrix->wwMatrix produces CPAN MatrixReal1 matrix, used for computation subroutines and can only
94-
be used on 1D tensors (row vector) or 2D tensors (matrix).
95+
be used on a degree 1 or degree 2 Matrix.
9596
9697
=head3 Information
9798
98-
$matrix->dimensions produces an array. For an n-dimensional tensor, the array has n entries for
99+
$matrix->dimensions produces an array. For an n-degree Matrix, the array has n entries for
99100
the n dimensions.
100101
102+
$matrix->degree returns the degree of the Matrix (the depth of the nested array).
103+
101104
=head3 Access values
102105
103106
row(i) : MathObjectMatrix
@@ -305,7 +308,7 @@ returns C<(2,2,2)>
305308

306309
#
307310
# Recursively get the dimensions of the matrix.
308-
# Returns (d_1,d_2,...,d_n) for an nD matrix.
311+
# Returns (d_1,d_2,...,d_n) for a degree n Matrix.
309312
#
310313
sub dimensions {
311314
my $self = shift;
@@ -315,6 +318,13 @@ sub dimensions {
315318
return ($r, $v->[0]->dimensions);
316319
}
317320

321+
sub degree {
322+
my $self = shift;
323+
my $v = $self->data;
324+
return 1 unless Value::classMatch($v->[0], 'Matrix');
325+
return 1 + $v->[0]->degree;
326+
}
327+
318328
#
319329
# Return the proper type for the matrix
320330
#
@@ -327,24 +337,31 @@ sub typeRef {
327337

328338
=head3 C<isSquare>
329339
330-
Return true is the matrix is 1D of length 1 or 2D and square, false otherwise
340+
Return true if the Matrix is degree 1 of length 1 or its last two dimensions are equal, false otherwise
331341
332342
Usage:
333343
334-
$A = Matrix([ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ] ]);
335-
$B = Matrix([ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]);
344+
$A = Matrix([ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]);
345+
$B = Matrix([ [ 1, 0, 0 ], [ 0, 1, 0 ] ]);
346+
$C = Matrix(1);
347+
$D = Matrix(1, 2);
348+
$E = Matrix([ [ [ 1, 2 ], [ 3, 4 ] ] ]);
349+
$F = Matrix([ [ [ 1, 2 ] ], [ [ 3, 4 ] ] ]);
336350
337-
$A->isSquare; # is '' (false)
338-
$B->isSquare; # is 1 (true);
351+
$A->isSquare; # is 1 (true) because it is a 3x3 matrix
352+
$B->isSquare; # is '' (false) because it is a 2x3 matrix
353+
$C->isSquare; # is 1 (true) because it is a degree 1 matrix of length 1
354+
$D->isSquare; # is '' (false) because it is a degree 1 matrix of length 2
355+
$E->isSquare; # is 1 (true) because it is a 1x2x2 tensor
356+
$F->isSquare; # is '' (false) because it is a 2x1x2 tensor
339357
340358
=cut
341359

342360
sub isSquare {
343361
my $self = shift;
344362
my @d = $self->dimensions;
345-
return 1 if scalar(@d) == 1 && $d[0] == 1;
346-
return 0 if scalar(@d) != 2;
347-
return $d[0] == $d[1];
363+
return $d[0] == 1 if scalar(@d) == 1;
364+
return $d[-1] == $d[-2];
348365
}
349366

350367
=head3 C<isRow>
@@ -369,7 +386,7 @@ sub isRow {
369386

370387
=head3 C<isOne>
371388
372-
Check for identity matrix.
389+
Check for identity Matrix (for degree > 2, this means the last two dimensions hold identity matrices)
373390
374391
Usage:
375392
@@ -379,19 +396,33 @@ Usage:
379396
$B = Matrix([ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]);
380397
$B->isOne; # is true;
381398
399+
$C = Matrix(1);
400+
$C->isOne; # is true
401+
402+
$D = Matrix([ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ]);
403+
$D->isOne; # is true
404+
382405
=cut
383406

384407
sub isOne {
385408
my $self = shift;
386409
return 0 unless $self->isSquare;
387-
my $i = 0;
388-
for my $row (@{ $self->{data} }) {
389-
my $j = 0;
390-
for my $k (@{ $row->{data} }) {
391-
return 0 unless $k eq (($i == $j) ? "1" : "0");
392-
$j++;
410+
if ($self->degree <= 2) {
411+
my $i = 0;
412+
for my $row (@{ $self->{data} }) {
413+
my $j = 0;
414+
for my $k (@{ $row->{data} }) {
415+
return 0 unless $k eq (($i == $j) ? "1" : "0");
416+
$j++;
417+
}
418+
$i++;
419+
}
420+
} else {
421+
for my $row (@{ $self->{data} }) {
422+
if (!$row->isOne) {
423+
return 0;
424+
}
393425
}
394-
$i++;
395426
}
396427
return 1;
397428
}
@@ -597,36 +628,73 @@ sub mult {
597628
return $self->make(@coords);
598629
}
599630

600-
# Make points and vectors into columns if they are on the right.
601-
$r = !$flag && Value::classMatch($r, 'Point', 'Vector') ? ($self->promote($r))->transpose : $self->promote($r);
631+
# Special case if $r is a Point or Vector and if $l is a degree 2 Matrix,
632+
# we promote $r to a degree 1 Matrix and later restore the product to be Point or Vector
633+
$r =
634+
!$flag
635+
&& Value::classMatch($r, 'Point', 'Vector')
636+
&& $l->degree == 2 ? ($self->promote($r))->transpose : $self->promote($r);
602637

603-
if (!$flag && Value::classMatch($r, 'Point', 'Vector')) { $r = ($self->promote($r))->transpose }
604-
else { $r = $self->promote($r) }
605-
#
606-
if ($flag) { my $tmp = $l; $l = $r; $r = $tmp }
638+
if ($flag) { ($l, $r) = ($r, $l) }
607639
my @dl = $l->dimensions;
608640
my @dr = $r->dimensions;
609-
if (scalar(@dl) == 1) { @dl = (1, @dl); $l = $self->make($l) }
610-
if (scalar(@dr) == 1) { @dr = (@dr, 1); $r = $self->make($r)->transpose }
611-
Value::Error("Can only multiply 2-dimensional matrices") if scalar(@dl) > 2 || scalar(@dr) > 2;
612-
Value::Error("Matrices of dimensions %dx%d and %dx%d can't be multiplied", @dl, @dr) unless ($dl[1] == $dr[0]);
641+
my @l = $l->value;
642+
my @r = $r->value;
643+
644+
# Special case if $r and $l are both degree 1, perform dot product
645+
if (scalar(@dl) == 1 && scalar(@dr) == 1) {
646+
Value::Error("Can't multiply degree 1 matrices of different lengths") unless ($dl[0] == $dr[0]);
647+
my $result = 0;
648+
for my $i (0 .. $dl[0] - 1) {
649+
$result += $l[$i] * $r[$i];
650+
}
651+
return $result;
652+
}
613653

614-
# Perform matrix multiplication.
654+
# Promote degree 1 Matrix to degree 2, as row or column depending on size
655+
# Later restore result to degree 1 if appropriate
656+
my $l1 = scalar(@dl) == 1;
657+
my $r1 = scalar(@dr) == 1;
658+
if ($l1) { @dl = (1, @dl); $l = $self->make($l); @l = $l->value }
659+
if ($r1) { @dr = (@dr, 1); $r = $self->make($r)->transpose; @r = $r->value }
660+
661+
# Multiplication is only possible when dimensions are Zxmxn and Zxnxk
662+
my $bad_dims;
663+
if (scalar(@dl) != scalar(@dr)) {
664+
$bad_dims = 1;
665+
} elsif ($dl[-1] != $dr[-2]) {
666+
$bad_dims = 1;
667+
} else {
668+
for my $i (0 .. scalar(@dl) - 3) {
669+
if ($dl[$i] != $dr[$i]) {
670+
$bad_dims = 1;
671+
last;
672+
}
673+
}
674+
}
675+
Value::Error("Matrices of dimensions %s and %s can't be multiplied", join('x', @dl), join('x', @dr)) if $bad_dims;
615676

616-
my @l = $l->value;
617-
my @r = $r->value;
677+
# Perform matrix/tensor multiplication.
618678
my @M = ();
619679
for my $i (0 .. $dl[0] - 1) {
620-
my @row = ();
621-
for my $j (0 .. $dr[1] - 1) {
622-
my $s = 0;
623-
for my $k (0 .. $dl[1] - 1) { $s += $l[$i]->[$k] * $r[$k]->[$j] }
624-
push(@row, $s);
680+
if (scalar(@dl) == 2) {
681+
my @row = ();
682+
for my $j (0 .. $dr[1] - 1) {
683+
my $s = 0;
684+
for my $k (0 .. $dl[1] - 1) { $s += $l[$i]->[$k] * $r[$k]->[$j] }
685+
push(@row, $s);
686+
}
687+
push(@M, $self->make(@row));
688+
} else {
689+
push(@M, $l->data->[$i] * $r->data->[$i]);
625690
}
626-
push(@M, $self->make(@row));
627691
}
628692
$self = $self->inherit($other) if Value::isValue($other);
629-
return $self->make(@M);
693+
694+
if ($l1) { return $self->make(@M)->row(1) }
695+
if ($r1) { return $self->make(@M)->transpose->row(1) }
696+
697+
return $other->new($self->make(@M));
630698
}
631699

632700
sub div {
@@ -653,10 +721,23 @@ sub power {
653721
$self->Error("Matrix is not invertible") unless defined($l);
654722
}
655723
Value::Error("Matrix powers must be non-negative integers") unless _isNumber($r) && $r =~ m/^\d+$/;
656-
return $context->Package("Matrix")->I($l->length, $context) if $r == 0;
657-
my $M = $l;
658-
for my $i (2 .. $r) { $M = $M * $l }
659-
return $M;
724+
return $l if $r == 1;
725+
my @powers = ($l);
726+
my @d = $l->dimensions;
727+
my $d = pop @d;
728+
pop @d;
729+
my $return = $context->Package("Matrix")->I(\@d, $d);
730+
my $p = $r;
731+
732+
while ($p) {
733+
if ($p % 2) {
734+
$p -= 1;
735+
$return *= $powers[-1];
736+
}
737+
push(@powers, $powers[-1] * $powers[-1]);
738+
$p /= 2;
739+
}
740+
return $return;
660741
}
661742

662743
# Do lexicographic comparison (row by row)
@@ -718,31 +799,51 @@ sub transpose {
718799

719800
=head3 C<I>
720801
721-
Get an identity matrix of the requested size
802+
Get an identity Matrix of the requested size
722803
723804
Value::Matrix->I(n)
724805
725806
Usage:
726807
727-
Value::Matrix->I(3); # returns a 3 by 3 identity matrix.
728-
$A->I; # return an n by n identity matrix, where n is the number of rows of A
808+
Value::Matrix->I(3); # returns a 3x3 identity matrix.
809+
Value::Matrix->I([2],3); # returns a 2x3x3 identity Matrix (tensor)
810+
Value::Matrix->I([2,4],2); # returns a 2x4x2x2 identity Matrix (tensor)
811+
$A->I; # return an identity matrix of the appropriate degree and dimensions such that I*A = A
729812
730813
=cut
731814

732815
sub I {
733-
my $self = shift;
734-
my $d = shift;
735-
my $context = shift || $self->context;
736-
$d = ($self->dimensions)[0] if !defined $d && ref($self);
737-
738-
Value::Error("You must provide a dimension for the Identity matrix") unless defined $d;
739-
Value::Error("Dimension must be a positive integer") unless $d =~ m/^[1-9]\d*$/;
816+
my $self = shift;
817+
my @d;
818+
my $d;
819+
my $context;
820+
if (ref($self) eq 'Value::Matrix') {
821+
@d = $self->dimensions;
822+
pop @d unless scalar(@d) == 1;
823+
$d = pop @d;
824+
$context = $self->context;
825+
} else {
826+
$d = shift; # array ref, or number
827+
if (ref($d) eq 'ARRAY') {
828+
@d = @{$d};
829+
$d = shift;
830+
}
831+
Value::Error("You must provide a dimension for the Identity matrix") unless ($d || $d eq '0');
832+
Value::Error("Dimension must be a positive integer") unless $d =~ m/^[1-9]\d*$/;
833+
$context = shift || $self->context;
834+
}
740835

741-
my @M = ();
836+
my @M;
742837
my $REAL = $context->Package('Real');
743838

744-
for my $i (0 .. $d - 1) {
745-
push(@M, $self->make($context, map { $REAL->new(($_ == $i) ? 1 : 0) } 0 .. $d - 1));
839+
if (!@d) {
840+
for my $i (0 .. $d - 1) {
841+
push(@M, $self->make($context, map { $REAL->new(($_ == $i) ? 1 : 0) } 0 .. $d - 1));
842+
}
843+
} else {
844+
for my $i (1 .. $d[0]) {
845+
push(@M, Value::Matrix->I([ @d[ 1 .. $#d ] ], $d));
846+
}
746847
}
747848
return $self->make($context, @M);
748849
}
@@ -1108,10 +1209,19 @@ sub det {
11081209

11091210
sub inverse {
11101211
my $self = shift;
1111-
$self->wwMatrixLR;
1112-
Value->Error("Can't take inverse of non-square matrix") unless $self->isSquare;
1113-
my $I = $self->{lrM}->invert_LR;
1114-
return (defined($I) ? $self->new($I) : $I);
1212+
my @d = $self->dimensions;
1213+
my @M;
1214+
for my $i (0 .. $d[0] - 1) {
1215+
if (scalar(@d) == 2) {
1216+
$self->wwMatrixLR;
1217+
Value->Error("Can't take inverse of non-square matrix") unless $self->isSquare;
1218+
my $I = $self->{lrM}->invert_LR;
1219+
return (defined($I) ? $self->new($I) : $I);
1220+
} else {
1221+
push(@M, $self->data->[$i]->inverse);
1222+
}
1223+
}
1224+
return $self->new($self->make(@M));
11151225
}
11161226

11171227
sub decompose_LR {

0 commit comments

Comments
 (0)